Rexroth
Bosch Group

Product catalog Industrial hydraulics

Part 6: Electronics

Product catalog Industrial hydraulics

Part 6: Electronics

Product catalogs Industrial hydraulics of Bosch Rexroth at a glance:

Part 1:	Pumps	RE 00112-01
Part 2	Motors	RE 00112-02
Part 3:	Cylinders	RE 00112-03
Part 4:	On/off valves	RE 00112-04
Part 5:	Proportional servo valves	RE 00112-05
Part 6:	Electronics	RE 00112-06
Part 7:	Systems	RE 00112-07
Part 8:	Power units, Manifolds and plates, Accumulators	RE 00112-08
Part 9:	Filters	RE 00112-09
Part 10:	ATEX units for potentially explosive atmospheres	RE 00112-10
For the latest product information from Bosch Rexroth, please visit our website: www.boschrexroth.com/ics		

Publisher	Bosch Rexroth AG
	Zum Eisengießer 1
	97816 Lohr, Germany
	Phone +49(0)9352/18-0
	Fax +49(0)9352/18-40
	info@boschrexroth.de
	www.boschrexroth.com
Catalog No.	Document no.: RE 00112-06
	Material no.: R999000307
	Edition: 2013-08
	Replaces: RE 00112-04_2008-11

Reprints and translation, in whole or in part, only with the publisher's prior consent.
Subject to revision.

Should you have queries with regard to the products in this catalog, please contact the Rexroth sales partner in your vicinity.
www.boschrexroth.com/contact

Contents

Valve amplifiers	7	1
Command value preparation	371	2
Motion	411	3
Sensors and signal transmitters	719	4
Electronic accessories	785	5

Electronics

Suitable analog or digital amplifier cards in Euro-card format and analog amplifiers in modular design or connector design that have been adapted to the valve technology are available to realize controlled or regulated drives. Rexroth provides a unique complete, scalable portfolio of digital control electronics and motion controllers - from 1-axis controllers to high-performance multi-axis control which are able to connect almost any number of axes via crosscommunication. Integrated software is adapted to the particularities of the hydraulics and enables commissioning, parameterization and diagnosis.

Electronics

Valve amplifiers

Designation		Component series	Data sheet
Page			

For proportional valves with electrical position feedback

Analog, Modular design

For valves: (Z)DRS 6	VT-MRMA1-1	1X	30214	157
For valves: DBETR, 2FRE	VT-MRPA1-...	1X	30221	167
For valves: 4WRE	VT-MRPA2, VT-MRPA1	1X	30219	173
Analog, Euro-card format				
For valves: DBETFX, DREB, DBETBX, 3REZ, 4WRP	VT-VRPA1-5...-1X/V0/	1X	30052	183
For valves: DBETFX, DREB, DBETBX, DBEB, 3REZ, 4WRP	VT-VRPA1-5...-1X/...-RTP	1X	30054	189
For valves: DBETR, 2FRE	VT-VRPA1-...	1X	30118	195
For valves: FE, FES	VT-VRPA1-50 bis VT-VRPA1-52	1X	30117	203
For valves: 4WRE	VT-VRPA2	1X	30119	211
For valves: DBG, DRG	VT-VRM1-1	1X	30405	221

Electronics | Valve amplifiers | Contents

Valve amplifiers

Designation	Type	Component series	Data sheet	Page
Digital, Euro-card format				
For valves: 4WRE	VT-VRPD-2	2 X	30126	227
For proportional valves for adjusting axial piston pumps				
Analog, Modular design				
For valves: DBE(M)30-3X, DRE(M)30-4X	VT-MSPA1-150	1X	30224	237
Analog, Euro-card format				
For the flow control of the axial piston variable displacement pumps A4VSO and A4VSG	VT 5035	1X	29955	243
For the flow control of the axial piston variable displacement pump A4VS...HS	VT- SR7	$1 \times$	29993	251
Digital, Euro-card format				
Zur Schwenkwinkel- und Druckregelung sowie Leistungsbegrenzung einer Axialkolben-Verstellpumpe A4VS...HS4	VT-VPCD	$1 \times$	30028	255

For control valves
Analog, Euro-card format

For valves: 4WRP	VT-VRPA2-5...-1X/V0/RTS	1X	30047	273
For valves: 4WRP	VT-VRPA2-5...-1X/V0/RTP	1X	30048	279
For valves: 4WRPH 6-1X	VT-VRRA1-527-1X/V0/...	1X	30042	285
For valves: 4WRPH...L, 5WRP10...L	VT-VRRA1-5...-2X/V0, VT-VRPA1-5...-2X/V0	2X	30041	291
For valves: 4WRPH...P-2X	VT-VRRA1-5...-2X/V0/K...- AGC	2X	30040	297
For valves: 4WRPH...P-2X	$\begin{array}{r} \text { VT-VRRA1-5...-2X/V0/ } \\ \text { KV-AGC } \end{array}$	2X	30046	303
For valves: 4WRL, 3WRCB	VT-VRRA1-527-2X/ VO/2STV	2X	30045	309
For valves: 4WRL10...P-3X	VT-VRRA1-527-2X/V0/ K40-AGC-2STV	2X	30043	315
For valves: 4WRL	$\begin{array}{r} \text { VT-VRPA1-527-2X/V0/ } \\ \text { RTS-2STV } \end{array}$	2X	30044	321
For valves: .WRC	VT-SR31 bis VT-SR38	1X	29931	329
For valves: .WRC	VT-SR41 bis VT-SR43	1X	30209	335

For servo valves

Analog, Modular design

For valves: 4WS2EM	VT 11021	29743	341
Analog, Euro-card format			
For valves: 4WS2EE	VT-SR1	29979	345
For valves: 4WS2EM, 4WS2EB, 4DS1EO, 3DS2EH	VT-SR2	29980	351
For valves: 4WRD-5X	VT-SR11	30211	357

For on/off valves

Analog, Connector design

For valves: Switching valves with direct current solenoid operation	VT-SSV-1	2 X	30262	363
For valves: WE6, WE10	VT-SSBA1	$1 X$	30362	367

Hydraulics

Rexroth
Bosch Group

Plug-in amplifier

Type VT-SSPA1

Component series 2X

Table of contents

Contents

Features
Ordering code, accessories
Function
Connections and adjustment
Block diagram and pin assignment
Technical data
Commissioning and adjustment
Device dimensions
Project planning / maintenance instructions / additional information

Features

Page
1
2
3

7

- Ramp time adjustable ($60 \mathrm{~ms} . . .5 \mathrm{~s}$)

3 - Sensitivity, valve zero point, dither frequency adjustable

- Operating voltage 24 V

Notice:

The photo is an example configuration.

- Analog amplifier for controlling proportional valves (pressure and directional valves) without position control
- Differential input

The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For proportional valves, without position control
VT-SSPA1-525-20/V0/0	0811405143	DBETX-1X...-25...
		DBE6X-1X...-25...
		3(2)FREX...-1X...-25...
VT-SSPA1-525-20/V0/I	0811405145	DBETX-1X...-25...
		DBE6X-1X...-25...
		3(2)FREX ...-1X...-25...
VT-SSPA1-508-20/V0/0	0811405144	DBETX-1X...-8...
		DRE10Z-1X...-8...
		DRE6X-1X...-8...
		DBE6X...1X...-8...
		DBE10Z-1X...-8...
VT-SSPA1-508-20/V0/I	0811405162	DBETX-1X...-8...
		DRE10Z-1X...-8...
		DRE6X-1X...-8...
		DBE6X...1X...-8...
		DBE10Z-1X...-8...

Test and service device

- Current measurement adapter VT-PA-5 (see data sheet 30073).

Function

The active connector is used for controlling proportional valves without position control.
It is directly attached to the solenoid plug of the valve. The connection cable on the control side (U_{B}, command value) is led through a gland fitting and connected.
An LED signals the available supply voltage. Depending on the type of the active connector, the command value is specified as voltage $0 \ldots 10 \mathrm{~V}$ or as current $4 \ldots 20 \mathrm{~mA}$.

The command value can be adjusted with regard to zero point and sensitivity. In case of voltage specification, a differential input is available.
Apart from that, the command value can be led via a ramp. In order to allow for adjustment to special applications, the dither amplitude was designed variably.
Upon delivery, the dither amplitude has already been set to a perfect value so that another adjustment is only necessary in the above-mentioned special cases.

Connections and adjustment

P1	- Ramp time
P2	- Sensitivity
P3	- Zero point
P4	- Dither frequency
St1	- Connection terminal
LED	- Display U_{B}

Block diagram and pin assignment

[^0]
Technical data (For applications outside these parameters, please consult us!)

Supply voltage nom. $24 \mathrm{~V}=$	
Solenoid 2.5 A	Battery voltage 10.2... 31 V Rectified voltage 10.2... 27 V
Solenoid 0.8 A	Battery voltage 21... 31 V Rectified voltage 21... 27 V
Residual ripple	$<2 \mathrm{~V}_{\text {SS }}$
Power consumption max. VA	55 (see valve data)
Command value $\begin{array}{ll} & 081 \\ & 081 \\ & 081 \\ & 081\end{array}$	$0 . .10 \mathrm{~V}=$
	4... 20 mA
Output	$I_{\text {max }}=2.5 \mathrm{~A}$ (rectangular voltage, pulse-modulated)
	$I_{\text {max }}=0.8 \mathrm{~A}$ (rectangular voltage, pulse-modulated)
Ramp time	$60 \mathrm{~ms} . . .5 \mathrm{~s}$
Dither frequency range Hz	95... 340
Zero point calibration range	See characteristic curves, page 5
Sensitivity adjustment range	
Special features	LED (green): Supply voltage is available, Clocked output stage, Fast energization for short actuating times, Adjustments via trimming potentiometer
Protection class	IP 65, in plugged condition
Electro-magnetic compatibility tested according to	EN 61000-6-2: 2002-08 EN 61000-6-3: 2002-08
Design:	Connector housing
Connections - Solenoid $-U_{B}$, command value	DIN 43650 Cable $5 \times 0.75 \mathrm{~mm}^{2}$, shielded (incl. PE)
Ambient temperature ${ }^{\circ} \mathrm{C}$	-20...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+85
Weight m	0.23 kg

Commissioning and adjustment

1. Preparation of the connection cable.

Crimp the wire end ferrules shortly (5 x)
2. Lead the cable through the gland fitting and connect to terminal St 1 .

Notice

Supply voltage and command value must not yet be applied to the cable!
3. Apply the supply voltage
\downarrow
LED (green) is illuminated.
4. Zero point adjustment \rightarrow Poti ${ }^{(3)}$, with minimum command value specification.
5. Sensitivity adjustment \rightarrow Poti (2),
with maximum command value specification.

(2) Sensitivity range
(33) Zero current range

Commissioning and adjustment

6. Dither frequency adjustment

$$
\rightarrow \text { Poti (20). }
$$

The dither frequency has already been correctly adjusted upon delivery. For special applications, correction may be necessary. in this connection, please contact DC-IA/PRM12.

\bigotimes Factory setting
(P4) Poti position
7. Ramp time adjustment
(accelerations and braking)
\rightarrow Poti ([1).

§ Factory setting
$\overparen{C W}$ (P1) Poti rotation

Device dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The plug-in amplifier may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifier for proportional valves

Type VT-SSPA1-1(5, 50, 100, 150)

RE 30116
Edition: 2013-04
Replaces: 12.12

Features

- Proportional command value/current characteristic curve for command values between 0 and 100%
- Regulated adjustable maximum current for command values greater than approx. 120 \% (for differential input only)
- Differential input
- Separate up/down ramp generator
- Zero potentiometer/pilot current
- Command value attenuator/maximum current
- Dither frequency potentiometer
- 24 V operating voltage
- Component series 1 X
- Analog, connector design
- Suitable for controlling solenoid-actuated pressure and directional valves without position control
(see page 2)

Contents

Features 1
Ordering code 2
Applications 3
Function 4
Block diagram 4
Characteristic curve 5
Technical data 5
Electrical connection 6
Adjustment elements / dimensions 7
Project planning / maintenance instructions / additional information 8

Ordering code

01	Valve amplifier for proportional valves, analog, connector design	VT-SSPA1
02	For DBET / DRE / DBEM...7x	1
	For KBPS... 8	5
	Universal, 2.5 A	50
	For KKDSR	100
	Universal, 0.8 A	150
03	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	1X
04	Version: Standard	vo
	Version: Ramp time: 10 ms to 2 s (only for variant VT-SSPA1-50-1X)	V002
05	Voltage input	0
06	24 V operating voltage	24
06	With cable gland	no code
	With M12 connector	K24

Type overview

Type	Mat. no.	U_{B}	$I_{\text {rated }}$	f with $I_{\text {rated }}$	Command value	For valve	Solenoid
VT-SSPA1-1-1X/V0/0-24	R900779643	24 V	1.6 A	340 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	DBET $/ \mathrm{DRE} / \mathrm{DBEM} \ldots 7 \mathrm{x}$	5.5Ω
VT-SSPA1-1-1X/V0/0-24/K24	R901238534	24 V	1.6 A	340 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	$\mathrm{DBET} / \mathrm{DRE} / \mathrm{DBEM} \ldots 7 \mathrm{x}$	5.5Ω
VT-SSPA1-5-1X/V0/0-24	R901024331	24 V	1.2 A	200 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	$\mathrm{KBPS} \ldots 8$	4.77Ω
VT-SSPA1-5-1X/V0/0-24/K24	R901238530	24 V	1.2 A	200 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	$\mathrm{KBPS} \ldots 8$	4.77Ω
VT-SSPA1-50-1X/V0/0-24	R901005414	24 V	2.5 A	305 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	Universal	$>2 \Omega$
VT-SSPA1-50-1X/V002/0-24	R901336728	24 V	2.5 A	305 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	Universal	$>2 \Omega$
VT-SSPA1-50-1X/V0/0-24/K24	R901238532	24 V	2.5 A	305 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	Universal	$>2 \Omega$
VT-SSPA1-100-1X/V0/0-24	R901030116	24 V	1.2 A	150 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	KKDSR1	7.2Ω
VT-SSPA1-100-1X/V0/0-24/K24	R901238528	24 V	1.2 A	150 Hz	$0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$	KKDSR1	7.2Ω
VT-SSPA1-150-1X/V0/0-24	R901104644	24 V	0.8 A	$150 \mathrm{~Hz}{ }^{1)}$	$0 \ldots 10 \mathrm{~V}$	Universal	19.5Ω
VT-SSPA1-150-1X/V0/0-24/K24	R901263782	24 V	0.8 A	$150 \mathrm{~Hz}{ }^{1)}$	$0 \ldots 10 \mathrm{~V}$	Universal	19.5Ω

1) With a solenoid resistance of $R=19.5 \Omega$ and a solenoid current of $I=100 \mathrm{~mA}$

Ordering code (continued)

Accessories for type .../K24

Description			Designation		Mat. no.
Assembled cable with straight mating connector			KABELSATZ VT-	PA1-1X/M12/1/V00	R901241656
				Cable sheath: PVC, Cable sheath \varnothing : 6.4 Wire cross-section: Cable and mating c Connection see pag	mm^{2} shielded
Assembled cable with angular mating connector			KABELSATZ VT-SSPA1-1X/M12/2/V00		R901241651
				Cable sheath: PVC, Cable sheath \varnothing : 6.4 Wire cross-section: Cable and mating c Connection see pag	mm^{2} shielded

Applications

2-conductor technology (only with differential input)

- Switching application with constant-current control
- Ramp function upon switch-on

The "IN+" input is bridged with supply voltage $\left(+U_{B}\right)$ in the connector, the IN-input is bridged with supply voltage $(0 \mathrm{~V})$ in the connector.
The maximum current must generally be adjusted according to the solenoid information using potentiometer "G". The ramp time "ramp up" ($t<$) can be set within the range of $t_{\text {min }}$ to 5 s .

3-conductor technology (only with differential input)

- Switching application with constant-current control
- Switching with low control power
- Ramp function can be adjusted separately when switching on and off the control voltage
The " $1 \mathrm{~N}+$ " input is connected to the control voltage (Us = 24 V), the "IN-" input is bridged with supply voltage $(0 \mathrm{~V})$ in the connector.
The maximum current must generally be adjusted according to the solenoid information using potentiometer "G". When switched off ("IN+" = 0 V or "IN+" = open) a pilot current can be set at "Z". This serves to reduce the switchon delay, particularly with ramp. If required, this value can be adjusted between approx. 0 mA and approx. 15% of the rated current. The ramp times "ramp up" (t <) and "ramp down" - ($\mathrm{t}>$) can be set within the range of $t_{\text {min }}$ to 5 s .

Applications (continued)

4-conductor technology

The "IN+" input is connected to the control signal ($\mathrm{Us}=0 \ldots 10 \mathrm{~V} / 24 \mathrm{~V}$), the "IN-" input is connected to the reference potential of the control voltage.
Pilot current and maximum current are set using potentiometers "Z" and "G" prior to commissioning. The current can now be proportionally adjusted according to the control voltage between the set pilot current and the set maximum current. The pilot current can be set in the range of approx. 0 mA to approx. 15% of the rated current, the maximum current can be set in the range of 0 to $I_{\text {max }}$ (see technical data page5).

Function

The plug-in amplifier is suitable for installation on a valve connection base according to EN 175301-803. By turning the plug insert and the electronics in the housing, the plug-in amplifier can be mounted on the solenoid in 90° increments.

Command value presetting

The command value range is between 0 and U_{B}. In the command value range $0 . . .10 \mathrm{~V}$ the solenoid current is proportional to the command value. Starting with a command value of 12 V up to U_{B} the solenoid current is almost constant according to the $I_{\max }$ setting (switching application).

Ramp generator

The ramp generator (5) limits the rise of the control output. The up and down ramp times can be adjusted separately. In switching applications, the ramps can be used to dampen the switch-on and switch-off impulse (When switching off only with 3 -conductor connection, i.e. switching signal and supply are connected separately). This

Block diagram

(1) Internal voltage adjustment
(2) Command value input
(3) Zero point potentiometer "Z" / pilot current I (IN = $0 \%)$
(4) Command value attenuator "G" / maximum current I (IN = 100%)
(5) Ramp time potentiometers " t " and " $t>$ "
(6) Frequency range correction " f "
(7) Power output stage
behavior also depends on the valve and solenoid type. The downstream command value attenuator (4) has no influence on the ramp time.

Characteristic curve

Up to a command value of approx. 110 \% the transfer characteristic curve rises linearly. The zero point can be corrected using potentiometer " Z ", the maximum value can be corrected using potentiometer "G".

Power output stage

Output stage (7) is freely clocking. The clock frequency depends on the current level, the operating voltage and the impedance of the controlled solenoid. The clock frequency can be re-adjusted using potentiometer "f". The current output stage generates a regulated current signal according to the control output provided by the summing device (3). If the clock frequency is too high, the valve hysteresis is increased. If the clock frequency is too low, the noise level of the hydraulic system is increased.
() = references to the block diagram

Characteristic curve

Technical data (for applications outside these parameters, please consult us!)

[^1]
Electrical connection

Terminal/pin	Terminal/pin		
$+U B / 1$	Operating voltage U_{B} 24 V	$\mathrm{IN}+/ 2$	Command value input $24 \mathrm{~V} ; 0 \ldots 10 \mathrm{~V}$
$0 \mathrm{~V} / 3$	0 V ground	$\mathrm{IN}-/ 4$	Reference potential for the command value

Terminal connection

Risk of malfunctions in case of EMC/ESD interference on the connection cable
Do not route command value connection lines through this section!

The connection for the protective grounding conductor is accessible after the electronic printed-circuit board has been removed.

Connection cross-section:
$4 \times 0.75 \mathrm{~mm}^{2}$ shielded or
$5 \times 0.5 \mathrm{~mm}^{2}$ shielded (connect shield in control cabinet) For VT-SSPA1-50:
$4 \times 1.5 \mathrm{~mm}^{2}$ shielded (connect shield in control cabinet) Cable diameter: 4.5 ... 11 mm

M12 plug-in connector port

Connector on amplifier

Mating connector and wire colors with pre-assembled cable set
Please order the cable set separately, see page 3

The connection for the protective grounding conductor is not provided

Connection cross-section:
$4 \times 0.75 \mathrm{~mm}^{2}$ shielded
(connect shield in control cabinet)

Adjustment elements / dimensions (dimensions in mm)

[^2]
Project planning / maintenance instructions / additional information

- The plug-in amplifier may only be wired when de-energized.
- Do not lay lines close to power cables!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- To set the potentiometers and to check the current values, use the measuring adapter and measure the currents in a potential-free manner.
- The specified maximum solenoid currents must not be exceeded.
- Do not use solenoids with integrated free-wheeling diodes.
- The supply voltage is to be protected by means of a fuse - see "Technical data".

Notice:

The solenoids are controlled with a clocked voltage. The solenoid voltage impulse level corresponds to the applied operating voltage $\left(+U_{B}\right)$.
Solenoids with integrated EMC protection circuit may only be used if the response voltage of the protection circuit both, for positive and negative voltage - is greater than the actual operating voltage. The specifications of the valve manufacturers are to be observed.

Notice:

- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of approx. $470 \mu \mathrm{~F}$ to $2200 \mu \mathrm{~F}$.
- The line length should not exceed 50 m . For longer lines, a capacitor with $\mathrm{C} \geq 100 \mu \mathrm{~F}$ has to be connected between U_{B} and 0 V . The line between capacitor and plug-in amplifier must not be longer than 50 m .
Recommendation: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 5 plug-in amplifiers.

Bosch Rexroth AG

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de www.boschrexroth.de

Hydraulics

Type VT-SSPA1-525-1X/V0

Component series 1X

Table of contents

Contents

Features

Ordering code
Adjustment, pin assignment
Block diagram with pin assignment
Technical data
Device dimensions
Project planning / maintenance instructions / additional information

Features

Analog amplifier for controlling proportional valves (pressure and directional valves) without position control

- Differential input
- Adjustable sensitivity and valve zero point
- Connection via 4-pole connector
- Operating voltage $12 / 24 \mathrm{~V}$

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code

Preferred types

Type	Material number	For valves
VT-SSPA1-525-10/V0	0811405041	All proportional valves without position control with solenoid $2.5 \mathrm{~A} / 25 \mathrm{~W}$
Connector socket 4-pole	1834484098	win

Adjustment, pin assignment

Sensitivity
gain α
100...50\%

I solenoid max. 2.8 A

(1) Start-up step

Zero point with $0.3 \ldots 0.5 \mathrm{~V}=U_{\mathrm{E}}$ adjustable

Block diagram with pin assignment

Technical data (For applications outside these parameters, please consult us!)

Design:	Connector housing
Plug-in connection	Solenoid: DIN 34650 Cable: 4-pole
Ambient temperature	${ }^{\circ} \mathrm{C}$
${ }^{\circ} \mathrm{C}$	$-20 \ldots+70$
Storage temperature min.	-20
Protection class	IP 65 including connector socket, cable $\varnothing 6 \ldots 8 \mathrm{~mm}$
Supply voltage	$12 \mathrm{~V} / 24 \mathrm{~V}$ battery voltage
	$11 \ldots 36 \mathrm{~V},<10 \%$ ripple)

Project planning / maintenance instructions / additional information

- The plug-in proportional amplifier may only be wired in de-energized condition.
- Do not lay lines close to power cables!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- To set the potentiometers and to check the current values, use the measuring adapter and measure the currents in a potential-free manner.
- The specified maximum solenoid currents must not be exceeded.
- Do not use solenoids with integrated free-wheeling diodes.
- The supply voltage is to be secured by means of a fuse - see "Technical data".
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric

amplifier modules

Type VT-MSPA1-5...

Component series 1X

Table of contents

Contents

Features

Ordering code
Front plate
Block diagram with pin assignment
Technical data
Device dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling direct operated proportional valves without electrical feedback
- Design: Module for snapping onto carrier rails
- Differential input for command value voltage $0 . . .+10 \mathrm{~V}$
- Ramp generator up and down can be set separately
- Zero point potentiometer
- Clocked output stage
- LED display:
- Supply voltage
- Ready for operation
- Ramp "Off"
- Removable connector strip

Notice:

The photo is an example configuration. The delivered product differs from the figure.

Ordering code

Preferred types

Amplifier type	Material number	For proportional valves, direct operated, without electrical feedback
VT-MSPA1-525-10/V0	0811405127	DBETX-1X...-25...
		DBE6X-1X...-25...
		(3)2FREX...-1X...-25...
VT-MSPA1-508-10/V0	0811405126	DBETX-1X...-8...
		DRE10Z-1X...-8...
		DRE6X-1X...-8...
		DBE6X-1X...-8...
		DBE10Z-1X...-8...

Front plate

Technical data (For applications outside these parameters, please consult us!)

		VT-MSPA1-508-10/V0	VT-MSPA1-525-10/V0
Supply voltage U_{B} at (7) - (6)		Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)	
Valve solenoid	A/VA	0.8/25	2.5/55
Current consumption max.	A	1.25	2.5
		The current consumption may increase with min. U_{B} and an extreme cable length to the control solenoid	
Max. power consumption	VA	30	60
Command value		$\left.\begin{array}{l}\text { (2): } 0 \ldots+10 \mathrm{~V} \\ (1): 0 \mathrm{~V} \\ \left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)\end{array}\right\}$ Differential input	
Command value source		Potentiometer $10 \mathrm{k} \Omega$ Supply +10 V from (5) (10 mA) or external signal source	
Solenoid output		Clocked current controller	
(9) - (10)	A	$I_{\text {max }}=0.8$	$I_{\text {max }}=2.5$
Cable lengths between amplifier and valve		Solenoid cable:up to $20 \mathrm{~m} 1.5 \mathrm{~mm}^{2}$ 20 to $50 \mathrm{~m} \mathrm{2.5} \mathrm{~mm}$	
LED displays		green: Enable yellow: Ramp off red: Undervoltage (U_{B} too low)	
External ramp switch-off		(3): $6 \ldots 40 \mathrm{~V}=\left(24 \mathrm{~V}_{\text {nom }}\right)$	
Ramp times	s	0.05... 5	
Adjustment possibilities		Zero point valve, Ramp times, Sensitivity, Dither amplitude	
Special features		Inputs and outputs short-circuit-proof, Clocked output stage, Fast energization for short actuating time	
Format (W $\times \mathrm{L} \times \mathrm{H}$)	mm	(86 $\times 110 \times 70.5$)	
Design		Module	
Mounting		Top hat rail TH35-7,5 or G rail G32 according to EN 60715	
Plug-in connection		Connector, 10-pole (screw terminal)	
Ambient temperature	${ }^{\circ} \mathrm{C}$	0...+70	
Storage temperature range	${ }^{\circ} \mathrm{C}$	-20...+70	
Weight	m	0.31 kg	

Information for the use of ramps

Setting of ramp UP (acceleration) and ramp DOWN (braking)
via 1 trimming potentiometer each.
Ramp ON, if (3) $=0 \mathrm{~V}$ (open). Ramp OFF, if (3) $=24 \mathrm{~V}_{\text {nom }}$ (min.: $\geqq 6 \mathrm{~V}$ high).
With ramp OFF, a previously started ramp is canceled.
Transition to the signal end value is effected as step.
Setting zero: With 0.5 V signal (min. 0.3 V).
Max. setting: With +10 V signal.

Device dimensions (dimensions in mm)

Wall mounting
$(86 \times 110 \times 70.5) \mathrm{mm}$

Carrier rail assembly (snap-in)

Project planning / maintenance instructions / additional information

- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifier module

Type VT-MSPA2-525...

Component series 1X

Table of contents

Contents

Features

Ordering code
Front plate
Block diagram with pin assignment
Technical data
Setting information
Device dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling
two 1-solenoid proportional directional valves
or
one 2-solenoid proportional directional valve
- Design: Module for snapping onto carrier rails
- Differential input for command value voltage $0 . . .+10 \mathrm{~V}$
- Ramp generator up and down can be set separately
- Zero point potentiometer
- Clocked output stage
- LED display:
- Supply voltage
- Ready for operation
- Ramp "Off"
- Removable connector strip

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code

Preferred types

Amplifier type	Material number	For proportional directional valve, direct operated, with two solenoids
VT-MSPA2-525-10/V0	0811405106	4WRBA..E../.W..-2X...

Front plate

Zero-adj.: $U_{\mathrm{E}}=+$ or -0.5 V

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at (9)	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Valve solenoid A/VA	2.5/60
Current consumption max. A	2.5
	The current consumption may increase with min. U_{B} and an extreme cable length to the control solenoid
Max. power consumption VA	60
$\begin{gathered} \hline \text { Command value: Signal (2) } \\ 0 \vee(1) \end{gathered}$	$\begin{aligned} & \hline 0 \ldots+10 \mathrm{~V} \text { or } \pm 0.3 \ldots \pm 10 \mathrm{~V} \text { (see mode) } \\ & \text { Differential amplifier }\left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right) \\ & \hline \end{aligned}$
Command values and logic Mode $\pm 10 \mathrm{~V}$	(4) and (5) +24 V (>6 V...max. 40 V) Command value $\pm 0.3 \ldots \pm 10 \mathrm{~V}$
Mode +10 V	(4) $+24 \mathrm{~V} \rightarrow$ Command value $0 \ldots+10 \mathrm{~V} 1$ (5) $+24 \mathrm{~V} \rightarrow$ Command value $0 \ldots+10 \mathrm{~V} 2$
Command value source	Potentiometer $10 \mathrm{k} \Omega$ Supply +10 V from (7) Max. (10 mA) or external signal source
Output solenoids 1 and 2 A	Clocked current controller
	$I_{\text {max }}=2.5$
Cable lengths between amplifier and valve	Solenoid cable: up to $20 \mathrm{~m} 1.5 \mathrm{~mm}^{2}$ 20 to $50 \mathrm{~m} \mathrm{2.5mm}^{2}$
LED displays	green: U_{B} Enable yellow: Ramp off red: Undervoltage (U_{B} too low)
External ramp switch-off	(3): $6 \ldots . .40 \mathrm{~V}=\left(24 \mathrm{~V}_{\text {nom }}\right)$
Ramp times s	0.05... 5
Adjustment possibilities for solenoids 1 and 2	Zero point valve, Ramp times, Sensitivity, Dither amplitude
Special features	Inputs and outputs short-circuit-proof, Clocked output stage, Fast energization for short actuating time
Format ($\mathrm{W} \times \mathrm{L} \times \mathrm{H}$) $\quad \mathrm{mm}$	(86 x 110×95.5)
Design	Module
Mounting	Top hat rail TH35-7,5 or G rail G32 according to EN 60715
Plug-in connection	Connector, 13-pole (screw terminal)
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range $\quad{ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.43 kg

Setting information

Information for the use of ramps

Setting of ramp UP (acceleration) and ramp DOWN (braking) via 1 trimming potentiometer each.
Ramp ON, if (3) is open.
Ramp OFF, if at (3) $U>6 \mathrm{~V}$ e.g. 10 V from (7) or $24 \mathrm{~V}=$ nom With ramp OFF, any ramp started before will be canceled. Transition to the signal end value is effected by means of a step.

Setting zero/max. gain

1. With mode (4) and (5) $=$ high ($24 \mathrm{~V}=$)

Command value $U_{E}(1)(2) \pm 10 \mathrm{~V}$
Zero: From 0.3 V , usually 0.5 V

+ adjustment = solenoid 1
- adjustment $=$ solenoid 2

Gain: Set in case of +10 V

$$
+=\text { solenoid } 1
$$

- = solenoid 2

2. With mode (4) or $(5)=$ high Command value $U_{\mathrm{E}}(1)(2) 0 \ldots+10 \mathrm{~V}$
Zero: With 0 V command value
Gain: With +10 V command value.
The logic signal determines:
4 = solenoid 1
$5=$ solenoid 2.

Device dimensions (dimensions in mm)

Wall mounting
$(86 \times 110 \times 74) \mathrm{mm}$

Carrier rail assembly (snap-in)

Project planning / maintenance instructions / additional information

- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Analog amplifier module

RE 30223

Type VT-MSPA1-1, VT-MSPA1-10, VT-MSPA1-11
Version: 2013-01
Replaces: 02.12

Features

- Suitable for controlling direct operated proportional pressure valves:
- DBET-6X,
- DBEM...-7X,
- (Z)DRE 6...-1X,
- 3DRE(M) 10...-7X,
- 3DRE(M) 16...-7X,
- ZDRE 10...-2X,
- (Z)DBE6...-2X,
- DRE(M) 10, 25, 32-6X
- Inverse-polarity protection of the operating voltage
- Differential input for command value voltage +10 V
- Ramp generator up and down can be set separately
- Zero point potentiometer
- 1 command value attenuator
- Characteristic curve generator
- Clocked power output stage
- LED display:
- Ready for operation (green)
- Measuring sockets for: - Pressure command value
- Actual current value
- Dither generator with command value- and operating voltage-dependent frequency
- Component series 1 X

Contents

Features 1

Ordering code 2
Functional description 2
Block diagram 3
Terminal assignment/device view 3
Technical data 4
Output characteristic curve 5
Device dimensions 5
Project planning/maintenance instructions/ additional information

Ordering code

01	Analog amplifier module	VT-MSPA1
02	For controlling direct operated proportional pressure valves:	
	DBET-6X, DBEM...-7X	1
	(Z)DRE 6...-1X	10
	3DRE(M) 10...-7X, 3DRE(M) 16...-7X, ZDRE 10...-2X, (Z)DBE6...-2X, DRE(M) 10, 25, 32-6X	11
03	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	1X
04	Standard version	Vo
05	Further details in the plain text	*

Functional description

Analog amplifier for controlling pressure valves without electrical feedback. The modular design allows for simple top hat rail mounting as is usual in control cabinets.

Command value input: 4

The module amplifier is controlled by means of a standard command value signal 0 to +10 V . By means of the zero point trimmer (Zw) (6), a zero point offset can be corrected.

Ramp generator: 5

In the ramp generator (5), the control output rise is limited. Using the trimmer " t <" (7), the time for the increasing command value signal is set and using trimmer " $t>$ " (8), the time for the decreasing command value voltage is set. The adjustable time is part of the technical data.

Characteristic curve generator: 10

Using the trimmer "Gw" (9), the rated current of 1.6 A for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value pressure characteristic curve results.

Clock generator: $\mathbf{1 2}$

In the clock generator (12), a frequency for the output stage adjusted to the command value is generated.

Power output stage: 11-14

Using the control output coming from the characteristic curve generator (10) and the clock frequency, the power output stage generates a PWM signal that is fed into the solenoid. The solenoid current is recorded and, in the current controller (11), compared with the control output and the difference is compensated.

Fault recognition: 15

Monitors the solenoid conductors with regard to cable break and short circuit as well as over-current of the output stage. If there is an error, the green ready for operation display goes out.

Block diagram

Terminal assignment/device view

Terminal assignment

Terminal	
1	$+U_{\mathrm{B}}$
2	Ground
3	$-U_{\text {command }}$
4	Solenoid +
5	Solenoid -
6	$+U_{\text {command }}$

Device view

Potentiometer:	"Gw"	Pressure command value
	"Zw"	Zero point
	"t <"	Ramp time up
	"t >"	Ramp time down
Sockets:	"w"	Pressure command value
	$" I "$	Actual current value
	$" \perp "$	Measurement zero

Technical data

(For applications outside these parameters, please consult us!)

		VT-MSPA1-1	VT-MSPA1-10	VT-MSPA1-11
Operating voltage	U_{B}	24 VDC +40 \% -10 \%		
Operating range:				
- Upper limit value	$u_{B}(\mathrm{t})_{\text {max }}$	35 V		
- Lower limit value	$u_{B}(\mathrm{t})_{\text {min }}$	21 V		
Power consumption	$P_{\text {max }}$	$<50 \mathrm{VA}$		
Current consumption	$I_{\text {max }}$	$<1.3 \mathrm{~A}$		
Fuse	$I_{\text {s }}$	Electronic overload protection and SMD fuse (soldered in)		
Inputs:				
- Command value (differential input)	$U_{\text {command }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{e}}=100 \mathrm{k} \Omega$		
Outputs:	$I_{\text {min }}$	1.9 A; $R_{20}=5.5 \Omega$ $1.9 \mathrm{~A} ; R_{20}=5.2 \Omega$ $1.9 \mathrm{~A} ; R_{20}=5.5 \Omega$ 180 to 450 Hz $330 \mathrm{~Hz} \pm 10 \%$ 180 to 450 Hz		
- Solenoid current/solenoid resistance	$I_{\text {max }}$			
- Frequency	f			
Setting ranges:				
GW: Solenoid current	1	$100 \mathrm{~mA} . . .1 .9 \mathrm{~A}$		
ZW: Zero point		± 25 \%		
$\begin{aligned} & \left.\begin{array}{l} t>: \\ t<: \end{array}\right\} \text { Ramp } . \\ & \hline \end{aligned}$	t	$80 \mathrm{~ms} . . .5 \mathrm{~s}$	$210 \mathrm{~ms} . . .5 \mathrm{~s}$	$160 \mathrm{~ms} . .5 \mathrm{~s}$
Measuring sockets:		0 to 10 V$1 \mathrm{mV} \stackrel{1}{=} \mathrm{mA}$ solenoid current		
- Command value "w"	U			
- Actual current value "I"	U			
Type of connection		6 screw terminals		
Type of mounting		Top hat rail TH 35-7.5 according to EN 60715		
Protection class according to EN 60529		IP 20		
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$25 \times 79 \times 85.5 \mathrm{~mm}$		
Admissible operating temperature range	ϑ	0 to $+50^{\circ} \mathrm{C}$		
Storage temperature range	ง	$-25 \text { to }+85^{\circ} \mathrm{C}$		
Ground	m	0.15 kg		

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30223-U.

Output characteristic curve

Device dimensions (dimensions in mm)

Project planning/maintenance instructions/additional information

- The amplifier module may only be wired when de-energized.
- The distance to radios must be sufficient (>> 1 m).
- Screen command value lines, do not lay them close to power cables, screen solenoid conductors.
- Do not use free-wheeling diodes in the solenoid conductors.
- With a strongly fluctuating operating voltage, it may in individual cases be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
- Recommendation: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analog amplifier module

Type VT-MSPA1-30, VT-MSPA1-150

Component series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Block diagram
Terminal assignment / device view
Technical data
Output characteristic curve
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling direct operated proportional pressure valves:
- DBE(M) 30-3X
- DRE(M) 30-4X
- Inverse-polarity protection of the operating voltage
- Differential input for command value voltage +10 V
- Ramp generator up and down can be set separately
- Zero point potentiometer
- 1 command value attenuator
- Characteristic curve generator
- Synchronized power output stage
- Output short-circuit-proof
- LED display:
- Ready for operation (green)
- Measuring sockets for: - Pressure command value
- Actual current value
- Dither generator with fixed frequency

Ordering code

Functional description

Analog amplifier for controlling pressure valves without electric return. The modular design allows for simple top hat rail assembly as is usual in control cabinets.

Command value input: 4

The module amplifier is controlled by means of a standard command value signal 0 to +10 V . By means of the zero point trimmer (Zw) (6), a zero point offset can be corrected.

Ramp generator: 5

In the ramp generator (5), the actuating variable rise is limited. Using the trimmer " $\mathrm{<}$ " (7), the time for the increasing command value signal is set and using trimmer " $t>$ " (8), the time for the decreasing command value voltage is set. The adjustable time is contained in the technical data.

Characteristic curve generator: 10
Using the trimmer "Gw" (9), the rated current for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value current characteristic curve results.

Clock generator: 12
In the clock generator (12), a fixed frequency for the output stage is generated.

Power output stage: 11-14
Using the actuating variable coming from the characteristic curve generator (10) and the clock frequency, the power output stage generates a PWM signal that is fed into the solenoid. The solenoid current is recorded and in the current controller (11) compared with the actuating variable and the difference is compensated.

Fault recognition: 15

Monitors the solenoid lines with regard to cable break and short circuit as well as overcurrent of the output stage. If there is an error, the green Ready for operation display goes out.

Terminal assignment / device view

Terminal assignment

Terminal	
1	$+U_{\mathrm{B}}$
2	Ground
3	$-U_{\text {command }}$
4	Solenoid +
5	Solenoid -
6	$+U_{\text {command }}$

Device view

Potentiometer:	"Gw"	Pressure command value
	"Zw"	Zero point
	"t < "	Ramp time up
	"t >"	Ramp time down
Sockets:	"w"	Pressure command value
	"I"	Actual current value
	" ${ }^{\prime \prime}$	Measurement null

Technical Data (For applications outside these parameters, please consult us!)

		VT-MSPA1-30	VT-MSPA1-150
Operating voltage	U_{B}	24 VDC + 40 \% -10 \%	
Operating range:			
- Upper limit value	$u_{B}(t)_{\text {max }}$		
- Lower limit value	$u_{B}\left(t^{\text {min }}\right.$ m		
Power consumption	$P_{\text {max }}$		
Current consumption	$I_{\text {max }}$		
Fuse	$I_{\text {s }}$	Electronic overload prote	SMD fuse (soldered in)
Inputs - Command value (differential input)	$U_{\text {command }}$	0 to +	$100 \mathrm{k} \Omega$
Outputs - Bias current (factory setting) - Solenoid current / resistance - Frequency	$\begin{gathered} I_{\mathrm{V}} \\ I_{\max } \\ f \end{gathered}$	$\begin{gathered} 100 \mathrm{~mA} \\ 800 \mathrm{~mA} ; R_{20}=19.5 \Omega \\ 200 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 200 \mathrm{~mA} \\ 700 \mathrm{~mA} ; R_{20}=19.5 \Omega \\ 100 \mathrm{~Hz} \pm 10 \% \end{gathered}$
Setting ranges GW: Solenoid current ZW: Zero point $\left.\begin{array}{l}\mathrm{t}>: \\ \mathrm{t}<:\end{array}\right\}$ Ramp	I t	$\begin{gathered} 100 \mathrm{~mA} . .800 \mathrm{~mA} \\ \pm 25 \% \\ 60 \mathrm{~ms} . . .5 \mathrm{~s} \end{gathered}$	$\begin{gathered} 200 \mathrm{~mA} . . .700 \mathrm{~mA} \\ \pm 25 \% \\ 60 \mathrm{~ms} \ldots 5 \mathrm{~s} \end{gathered}$
Measuring sockets - Command value "w" - Actual current value "I"	U U	$1 \mathrm{mV} \triangleq 1 \mathrm{~mA}$	oid current
Type of connection		6 sc	nals
Mounting type		Top hat rail TH 35-7	ding to EN 60715
Protection class according to EN 60529			
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$25 \times$	mm
Admissible operating temperature range	ง		
Storage temperature range	$ง$		
Weight	m		

Important:

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see 30223-U (declaration on environmental compatibility).

VT-MSPA1-30

VT-MSPA1-150

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier module may only be wired when de-energized!
- The distance to radios must be sufficient (>> 1 m)!
- Screen command value lines, do not lay them close to power cables, screen solenoid lines!
- Do not use free-wheeling diodes in the solenoid lines!
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see RE 30750); sufficient for up to 3 amplifier modules.

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Service

Amplifier module for controlling the explosion-proof proportional pressure valve DBET-6X...XE ${ }^{1)}$

Type VT-MSPA1-200

Component series 1X

Features

- Amplifier module is not subject to the directive 94/9/EC (ATEX directive)
- In connection with the Rexroth monitoring module ${ }^{1)}$ VT-MUXA2-2 suitable for controlling the proportional pressure valve of type DBET-6X...XE
- Inverse-polarity protection of the operating voltage
- Differential input for command value voltage +10 V
- Ramp generator up and down can be set separately
- Zero point potentiometer
- 1 command value attenuator
- Characteristic curve generator
- Synchronized power output stage
- Output short-circuit-proof
- LED display: - Ready for operation (green)
- Measuring sockets for: - Pressure command value
- Actual current value
- Dither generator with command value- and operating voltagedependent frequency

[^3]Device view/unit dimensions
Important notes

Features

Ordering code
2
Functional description
2
Block diagram
3
Technical data
Output characteristic curve
Terminal assignment

Table of contents

Contents

4
4

$$
{ }^{4}
$$

5

Ordering code

Component series 10 to 19 $=1 \mathrm{X}$
(10 to 19: Identical technical data and pinout)

Functional description

Analog amplifier for controlling pressure valves without electric return. The modular design allows for simple top hat rail assembly as is usual in control cabinets.
() = Assignment to the block diagram on page 3

Command value input (4)

The module amplifier is controlled by means of a standard command value signal 0 to +10 V . By means of the zero point trimmer (Zw) (6), a zero point offset can be corrected.

Ramp generator (5)

In the ramp generator (5), the actuating variable rise is limited. Using the trimmer " t " (7), the time for the increasing command value signal is set and using trimmer " $t>$ " (8), the time for the decreasing command value voltage is set. The adjustable time is in each case 30 ms to $>5 \mathrm{~s}$.

Characteristic curve generator (10)
Using the trimmer "Gw" (9), the rated current of 1.0 A for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value/pressure characteristic curve results.

Clock generator (12)

In the clock generator (12), a frequency for the output stage adjusted to the command value is generated.

Power output stage (11) to (14)

Using the actuating variable coming from the characteristic curve generator (10) and the clock frequency, the power output stage generates a PWM signal that is fed into the solenoid. The solenoid current is recorded and in the current controller (11) compared with the actuating variable and the difference is compensated.

Fault detection (15)

Monitors the solenoid lines with regard to cable break and short circuit as well as overcurrent of the output stage. If there is an error, the green Ready for operation display goes out.

Monitoring and limitation of the solenoid current (17)

The VT MUXA2-2 module provides for the monitoring and limitation of the solenoid current. The functioning is described in data sheet 30290 .

(17) VT-MUXA2-2 monitoring module
(order separately)
(18) Ferrite sleeve (only included in the
delivery of the monitoring module)

1

Technical Data (For applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC +40\%-10 \%
Operating range:		
- Upper limit value	$u_{B}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{B}(t)_{\text {min }}$	21 V
Power consumption	$P_{\text {max }}$	$<50 \mathrm{VA}$
Current consumption	$I_{\text {max }}$	$<1.3 \mathrm{~A}$
Fuse	$I_{\text {s }}$	Electronic overload protection and SMD fuse (soldered in)
Inputs: - Command value (differential input)	$U_{\text {command }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{e}}=100 \mathrm{k} \Omega$
Outputs: - Solenoid current / resistance - Frequency	$\begin{array}{r} I_{\max } \\ f \end{array}$	$\begin{aligned} & 1.0 \mathrm{~A} ; R_{20}=8.3 \Omega \\ & 180 \text { to } 450 \mathrm{~Hz} \end{aligned}$
Setting ranges: - GW: Solenoid current - ZW: Zero point - t>: $\}$ Ramp $-\mathrm{t}<\mathrm{i}$ \}	I t	$\begin{aligned} & 60 \mathrm{~mA} . . .1000 \mathrm{~mA} \\ & \pm 25 \% \\ & 60 \mathrm{~ms} . . .5 \mathrm{sec} \end{aligned}$
Measuring sockets: - Command value " w " - Actual current value "I"	U	0 to 10 V $1 \mathrm{mV} \triangleq 1 \mathrm{~mA}$ solenoid current
Type of connection		6 screw terminals
Mounting type		Top hat rail TH 3-7.5 according to EN 60715
Protection class		IP 20 according to EN 60529
Dimensions (W \times H \times D)		$25 \times 79 \times 85.5 \mathrm{~mm}$
Admissible operating temperature range	\checkmark	0 to $+50{ }^{\circ} \mathrm{C}$
Storage temperature range	\cup	-25 to $+85{ }^{\circ} \mathrm{C}$
Weight	m	0.15 kg

Note!

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30223-U.

Output characteristic curve

Terminal assignment

Terminal	
1	$+U_{\mathrm{B}}$
2	Ground
3	$-U_{\text {command }}$
4	Solenoid +
5	Solenoid -
6	$+U_{\text {command }}$

Device view/unit dimensions (dimensions in mm)

Potentiometer:	"Gw"	Pressure command value
	"Zw"	Zero point
	"t <"	Ramp time up
	"t >"	Ramp time down
Sockets:	"w"	Pressure command value
	"I"	Actual current value
	$" \perp "$	Measurement null

Important notes

Explosion hazard caused by incorrect assembly!

For achieving the prescribed safety when operating the valve in the explosive area, it has to be ensure that the solenoid current does not exceed 1 A. For monitoring and limiting the valve current, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.
The VT-MSPA1-200 amplifier module and the VT-MUXA2-2 monitoring module may only be installed outside the explosive area!

The VT-MSPA1-200 amplifier module and the VT-MUXA2-2 monitoring module are not subject to the directive 94/9/EC (ATEX directive)!

More information:

- The amplifier module may only be wired when de-energized!
- Do not lay signal lines close to power cables and lines!
- Do not use free-wheeling diodes in the solenoid lines!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least!
- Always shield command value lines, connect shielding to protective earthing (PE) on the module side!
- Also shield the solenoid lines!
- For solenoid lines up to 50 m in length, use the line type LiYCY $1.5 \mathrm{~mm}^{2}$!
- With greater lengths please consult us!
- In applications in connection with the VT-MUXA2-2 monitoring module, please observe the wiring specified in the block diagram of data sheet 30290.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Only carry out measurements at the module using instruments with $R \mathrm{i}>100 \mathrm{k} \Omega$.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm !
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see data sheet 30750), sufficient for up to 3 amplifier modules

[^4]© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Analogue amplifier module

Type VT-MSPA1-50

Component Series 1X

Table of contents

Contents

Ordering code

Features

Functional description
Block circuit diagram / Pin assignment
Terminal assignment
Technical Data2

Output curve
Unit dimensions

Suitable power supply unit:

- Type VT-NE30-2X, see RE 29929 compact power supply unit 115/230 VAC $\rightarrow 24$ VDC, 108 W

Features

- Suitable for controlling of one proportional solenoid; especially of direct operated proportional directional valves in screw-in cartridge valve technology
- Differential input
- One pulsed output stage
- Ramp generator; ramp times „up" and "down" separately adjustable
- Reverse polarity protection for power supply
- Adjustable maximal current
- Adjustable current step
- Zero point potentiometer
- Measuring sockets for actual value and command value of current
- LED lamp „Ready for operation" (green)

Ordering code

Component Series 10 to $19 \quad=1 \mathrm{X}$
(10 to 19: unchanged technical data and pin assignment)

Functional description

General

The amplifier module is to be snapped onto top hat rail according to EN 60715. The electrical connection is by means of screw terminals. The module is operated using 24 VDC.
The internal power supply unit provides all internally required positive and negative supply voltages. As soon as the power supply unit is in operation, the green LED („Ready for operation") lights up.

Command value preselection

The internal command value signal is generated by the sum
[3] of the external command value signal applied to differential input [2] and the zero point offset (zero point potentiometer „Zw").

Ramp generator [4]

The ramp generator limits the gradient of the control variable. Due to the characteristic curve generator connected downstream, the ramp time is not extended or shortened. The ramp time can be set separately for "up" and "down" ramps with the help of potentiometers (" t <" and " $\mathrm{t}>$ ").

Characteristic curve generator [5]

The adjustable characteristic curve generator can be used to adjust the step-change height and maximum values to the hydraulic requirements.

Clock-pulse generator [6]

The clock pulse generator generates the clock frequency and feeds it to the output stage.

Current output stage [7]

The current output stage generates the pulsed solenoid current for the proportional valve. The solenoid current is 2.5 A . The output stage output is short-circuit-proof.

Fault detection [8]

The solenoid cables are monitored for cable break and shortcircuit and the output stage for overcurrent. In the case of an error, the green LED flashes.
[] = Cross-reference to the block circuit diagram

Block circuit diagram / Pin assignment

Terminal assignment

Operating- voltage	$+\mathrm{U}_{\mathrm{B}}$	1	4	
	0 V	2	5	
Reference potential	3		Proportional solenoid	

Terminals 3 and 6: Differential input

Technical Data (For applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC + 40 \% -10 \%
Operating range:		
- Upper limit value	$u_{B}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{B}(t)_{\text {min }}$	21 V
Current consumption (at $U_{\mathrm{B}}=24 \mathrm{~V}$)	$I_{\text {max }}$	2 A
Power consumption	$P_{\text {S }}$	max. 50 VA
Fuse		Electronic overload protection of the output stage
Inputs:		
- Command value (differential input)	$U_{\text {Comm }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{e}}$ approx. $100 \mathrm{k} \Omega$
Adjustment ranges:		
- Zero point of command value (potentiometer „Zw")		± 10 \%
- Max. command value (potentiometer "Gw")		0 to 110%
- Ramp times (potentiometer „t <" and „t>")		approx. 50 ms to ca. 5 s
- Step-change height (potentiometer „Sw")		0 to 50%
Outputs:		
- Current output stage		
- Solenoid current / resistance	$I_{\text {max }}$	$2.5 \mathrm{~A} ; R_{(20)}=2 \Omega$
- Clock-pulse frequency	f	$360 \mathrm{~Hz} \pm 15 \%$
- Measuring socket		
- Command value "w"	U	0 to 10 V
- Actual current value „"*	\cup	0 to $2.5 \mathrm{~V}(\mathrm{mV} \xlongequal{\wedge} \mathrm{mA})$
Type of connection		6 threaded terminals
Type of mounting		Top hat rail TH $35-7.5$ to EN 60715
Insulation		IP 20 to EN 60529
Dimensions (Wx H x D)		$25 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range	७	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	७	-20 to $+70^{\circ} \mathrm{C}$
Weight	m	0.13 kg

[㞓 Note!
For details on environment simulation tests in the fields of EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30225-U (declaration on environmental compatibility).

Output curve

Unit dimensions (in mm)

Potentiometer:

Gw Max. command value
Sw Step-change height of internal command value
Zw Zero point of command value
$\mathrm{t}<$ Ramp time for increasing command values
$t>$ Ramp time for decreasing command values
Measuring socket:
w Command value
I Actual current value
\perp Reference potential

Engineering notes / Maintenance notes / Supplementary information

- The amplifier module may only be wired when disconnected from the power supply!
- The distance to radio sources must be adequate ($\gg 1 \mathrm{~m}$)!
- Shield command value cables, do not lay in the vicinity of power cables!
- Do not connect freewheel diodes in the solenoid lines!
- In the case of heavy fluctuations in the operating voltage, it may become necessary to install an external smoothing capacitor having a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module type VT 11073 (see RE 29750); sufficient for up to 3 amplifier modules
- For solenoid cables up to 50 m long, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$. In the case of greater lengths, please consult us!
- The inputs of the differential amplifier must always be switched on or off simultaneously!
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Use only instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$ for taking measurements on the module!
- For adjusting the potentiometers, use a screw driver with a blade width of 2.5 mm to 3.5 mm !
- Adjustment of step-change heights:

1. Turn potentiometer "Sw" to the left-hand limit stop
2. Preselect a command value of 0.5 V using zero point potentiometer " Zw " (measuring socket " w ")
3. Set the required step-change height using potentiometer "Sw"; check the value in measuring socket "w"
4. Apply 0 V to the differential input
5. Set 0 V in measuring socket " w " using the " Zw " potentiometer (zero point balancing)

Bosch Rexroth AG

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analog amplifier module

Type VT-MSPA2-1

Component series 1X

Table of contents

Content
Features
Ordering code
Functional description
Block diagram
Technical data
Terminal assignment
Unit dimensions
Project planning / maintenance instructions /
additional information
Setting recommendation

Features

- Suitable for controlling direct operated proportional directional valves without electric position feedback (type 4WRA, size 6 and 10, component series 2 X)
- Command value input $\pm 10 \mathrm{~V}$ (differential input)
- Ramp generation with separately adjustable ramp time "up/down"
- Characteristic curve correction by means of separately adjustable step heights and separately adjustable maximum values
- Release input

6 - Reverse polarity protection for the voltage supply
6 - Power supply with DC/DC converter without raised zero point

- LED displays: • Ready for operation (green)

Release (yellow)

- Mode selector switch "S"

Ordering code

(10 to 19: Identical technical data and ports)

Functional description

General

The amplifier modules are snapped onto top hat rails. The electrical connection is established via screw terminals. The modules are operated with 24 V direct voltage.

Power supply unit [1]

The amplifier modules have a power supply unit with switchon current limitation. This unit supplies all internally required positive and negative supply voltages. The switch-on current limitation prevents high switch-on current peaks.

Command value provision

The internal command value signal is calculated from the total [3] of the external command value signal available at the differential input [2] and the zero point offset (zero point potentiometer " Zw ").
A positive command value results in a current increase in the solenoid " b " and thus a flow in the valve from P to A and from B to T.
A negative command value results in a current increase in the solenoid "a" and thus a flow in the valve from P to B and from A to T.

Release function [11]

The release function enables the power output stage and forwards the internal command value signal to the ramp generator. The release signal is displayed by an LED on the front plate. If the release is connected, the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator [4]

The ramp generator limits the rise of the actuating variable. The downstream step functions and amplitude attenuators do not extend or shorten the ramp time.
Notes for setting and measuring the ramp time:

Value at measuring socket "t < " or "t >"						$U_{\text {t }}$ in V	5	3	2
Current ramp time (± 20 \%)						t in ms	20	33	50
U_{t} in V	1	0.5	0.3	0.2	0.1	0.05	0.03		0.02
t in ms	100	200	333	500	1000	2000	3333		5000

$\begin{aligned} & \text { The follow- } \\ & \text { ing applies: }\end{aligned} \quad \mathrm{t}=\frac{100 \mathrm{~V} \mathrm{~ms}}{U_{t}}$
Example:

$$
\begin{array}{ll}
\text { Measured } & U_{\mathrm{t}}=5 \mathrm{~V} \\
\text { Results in } & t=\frac{100 \mathrm{~V} \mathrm{~ms}}{5 \mathrm{~V}}=20 \mathrm{~ms}
\end{array}
$$

Characteristic curve generator [5]

Using the adjustable characteristic curve generator, step height and maximum values for positive and negative signals can be set separately, adjusted to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear.

Amplitude limiter [6]

The internal command value is limited to ca. ± 110 \% of the nominal range.

Current controller [7]

Power output stage [8]

The power output stage creates the clocked solenoid current for the proportional valve. The solenoid current is limited to 2.7 A per output. The output stage outputs are short-circuitproof. The output stages are de-energized in case of an internal fault signal or if the release is missing.

Clock generator [9]

The clock generator creates the clock frequency "f" of the output stages. Using the mode selector switch, three basic frequencies can be set:
S = 1: $f=150 \mathrm{~Hz} \ldots 400 \mathrm{~Hz}$ adjustable
S = 2: $f=380 \mathrm{~Hz} \ldots 180 \mathrm{~Hz} \pm 15 \%$ (WRA 10)
$\mathrm{S}=3$: $\quad \mathrm{f}=350 \mathrm{~Hz} \ldots 240 \mathrm{~Hz} \pm 15 \%$ (WRA 6)
When setting the WRA valves, the frequency changes depending on the command value and on the operating voltage.

Fault detection [11]

The solenoid line is monitored for cable break as well as overcurrent of the output stage.

Command value inversion [12]

The command value created internally from the input signal and the zero point offset signal can be inverted by an external signal.

Technical Data (for applications outside these parameters, please consult us!)

Operating volt		U_{B}	24 VDC +40\%-20 \%
Operating range:			
- Upper limit		$u_{B}(t)_{\text {max }}$	35 V
- Lower limit		$u_{B}(t)_{\text {min }}$	18 V
Power consum		S	< 48 VA
Current consu		1	$<2 \mathrm{~A}$
Fuse			Thermal overload protection (with restart if the value falls below the temperature threshold)
Inputs: - Analog			
- Command value (differential input)		$U_{\text {e }}$	0 to $\pm 10 \mathrm{~V} ; R_{\mathrm{e}}>50 \mathrm{k} \Omega$ (current input on request)
- Digital			
- Release	ON	\cup	8.5 V to $U_{\mathrm{B}} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
	OFF	\cup	0 to $6.5 \mathrm{~V} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
- Inversion	ON	\cup	8.5 V to $U_{\mathrm{B}} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
	OFF	U	0 to $6.5 \mathrm{~V} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Setting ranges:			
- Clock frequency "f"		S $=1$	$150 \mathrm{~Hz} \ldots 400 \mathrm{~Hz}$ adjustable
		S = 2	$380 \mathrm{~Hz} \ldots 180 \mathrm{~Hz} \pm 15 \%$ (WRA 10)
		S $=3$	$350 \mathrm{~Hz} \ldots 240 \mathrm{~Hz} \pm 15$ \% (WRA 6)
- Zero point command value (potentiometer "Zw")			± 30 \%
- Ramp times (potentiometer " $\mathrm{<}$ " and " l >")			20 ms to 5 s
- Step heights (potentiometer "Sw+" and "Sw-")			0 to 50%
- Amplitude attenuator (potentiometer "G+" and "G-")			0 to 110% (applies to the step height setting of 0%)
Outputs:			
- Power output stages /			0 to 2.5 A; short-circuit-proof; clocked
- Measuring sockets			
- Ramp time		U	20 mV to 5 V
- Ramp time		\cup	20 mV to 5 V
- Actual val		U	0 to $\pm 2.5 \mathrm{~V}(\mathrm{mV} \triangleq \mathrm{mA})$
- Command	e "w"	U	0 to $\pm 10 \mathrm{~V}$
- Command	e after ramp "wR"	\cup	0 to $\pm 10 \mathrm{~V}$
Type of connection			12 screw terminals
Mounting type			Top hat rail TH 35-7.5 according to EN 60715
Protection class according to EN 60529			IP 20
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)			$40 \times 79 \times 85.5 \mathrm{~mm}$
Admissible op	g temperature range	$ง$	0 to $+50^{\circ} \mathrm{C}$
Storage tempe	e range	\checkmark	$-25^{\circ} \mathrm{C}$ to $+70{ }^{\circ} \mathrm{C}$
Weight		m	0.14 kg

Important:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30228-U.

Terminal assignment

Operating voltage	$+U_{B}$	1	7		Solenoid "b"
	0 V	2	8		
Release	$U_{\text {F }}$	3	9		Solenoid "a"
Differential input	-IN	4	10		
	+IN	5	11	n.c.	
Inversion	INV	6	12	n.c.	

Unit dimensions (dimensions in mm)

LED displays:

(:) Ready for operation (green)
G Release (yellow)

Potentiometer:

Gw+ Amplitude attenuator for positive command values
Gw- Amplitude attenuator for negative command values
Sw+ Step height for positive direction
Sw- Step height for negative direction
Zw Zero point command value
t < Ramp time for increasing command values
t> Ramp time for decreasing command values
f Frequency setting
Measuring sockets:
t < Ramp time "up"
t> Ramp time "down"
I Actual current value
w Command value
wR Command value after ramp
\perp Measurement null

Mode selector switch
1: General use with $I_{\max }=2.5 \mathrm{~A}$; $f=150 \mathrm{~Hz} \ldots 400 \mathrm{~Hz}$
2: Frequency optimized for WRA 10
3: Frequency optimized for WRA 6

Project planning / maintenance instructions / additional information

- The amplifier module may only be wired when de-energized!
- Do not lay lines close to power cables!
- Do not use free-wheeling diodes in the solenoid lines!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least!
- Always shield command value lines; connect shielding to protective earthing (PE) on the module side! Recommendation:

> Also shield solenoid lines!

For solenoid lines up to a length of 50 m , use the cable type LiYCY $1.5 \mathrm{~mm}^{2}$!
With greater lengths please contact us!

- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Only carry out measurements at the module using instruments with $\mathrm{Ri}>100 \mathrm{k} \Omega$.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm !
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules
- In the condition as supplied, the setting of the clock frequency corresponds to the requirements of the WRA 6 and WRA 10 valves. Rotating the "f" potentiometer changes the valve hysteresis and may lead to disturbing noise developments.

Setting recommendation

The system-specific wiring must have been completed.

Signal	Setting
Command value zero point	- Set the external command value specification to zero - Set the internal command value to zero using the "Zw" potentiometer and carry out a check at the "wR" measurement socket
Ramp times	- Set ramp time according to formula or table (see functional description "Ramp generator) and check it at the " t >" and " t <" measurement sockets
Step height	- Apply the release signal - Using the "Zw" zero point potentiometer, set the measurement signal at "wR" to +0.3 V - Using the "Sw+" potentiometer, set the necessary positive step height - Using the "Zw" zero point potentiometer, set the measurement signal at "wR" to $-0,3 \mathrm{~V}$ - Using the "Sw-" potentiometer, set the necessary negative step height - Set the zero point Note: With an external command value provision, it must at least result in $+0.3 \mathrm{~V} /-0.3 \mathrm{~V}$ at the " wR " measuring socket.
Maximum values	Important: Before adjusting the maximum values, zero point and step heights must be set correctly. The maximum current must not exceed the nominal solenoid current! - Set the step heights first; create the command value ± 100 \% externally - Using the "Gw+"/"Gw-" potentiometers, set the required maximum actuating variable and carry out a check at the " $w R$ " and " w " measurement sockets
Clock frequency:	Condition as supplied: $\begin{aligned} & S=1: f=170 \mathrm{~Hz} \\ & S=2 \text { and } " w "=0: f=380 \mathrm{~Hz} \\ & S=3 \text { and } " w "=0: f=350 \mathrm{~Hz} \end{aligned}$

Note: The new setting of the frequency can be carried out with a digital multimeter that is able to measure frequencies. Measure at solenoid terminals 7 against 2 and/or 9 against 2.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Service

Rexroth

Bosch Group

Amplifier module for controlling ${ }^{1)}$ the explosion-proof proportional directional valves 4WRA...XE, 3DREP 6...XE and 4WRZ...XE

RE 30228-200/03.11
1/8
Replaces: 07.05

Type VT-MSPA2-200

Component series 1X

Table of contents

Content
Page
Features
Ordering code
Functional description
Block diagram
Technical Data
Characteristic curves
Terminal assignment
Device view / unit dimensions
Important notes / setting information

- Release input
- Reverse polarity protection for the voltage supply
- Power supply with DC/DC converter without raised zero point for the internal supply
- LED displays: •Ready for operation (green) Release (yellow)

Features

- Amplifier module is not subject to the directive 94/9/EC
- In connection with the Rexroth monitoring module ${ }^{1)}$ VT-MUXA2-2 suitable for controlling proportional directional
valves without electric position feedback, types 4WRA...XE, 3DREP 6...XE and 4WRZ...XE
- Command value input $\pm 10 \mathrm{~V}$ (differential input)
- Ramp generation with separately adjustable ramp time "up/down"
- Characteristic curve correction by means of separately adjustable step heights

(ATEX directive)

[^5]
Ordering code

Functional description

General

The amplifier modules are snapped onto top hat rails according to EN 60715. The electrical connection is established via screw terminals. The modules are operated with 24 V direct voltage.
() = Assignment to the block diagram on page 3

Power supply unit (1)

The amplifier modules have a power supply unit with switchon current limitation. This unit supplies all internally required positive and negative supply voltages. The switch-on current limitation prevents high switch-on current peaks.

Command value provision

The internal command value signal is generated from the external command value signal available at the differential input (2).
A positive command value results in a current increase in the " b " solenoid and thus a flow in the valve from $\mathrm{P} \rightarrow \mathrm{A}$ and from $B \rightarrow T$.
A negative command value results in a current increase in the " a " solenoid and thus a flow in the valve from $\mathrm{P} \rightarrow \mathrm{B}$ and from $\mathrm{A} \rightarrow \mathrm{T}$.

Release function (10)

The release function enables the power output stage and forwards the internal command value signal to the ramp generator. The release signal is displayed by an LED on the front plate. If the release is connected, the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator (3)

The ramp generator limits the rise of the actuating variable. The downstream step functions do not extend or shorten the ramp time.
Notes for setting and measuring the ramp time:

Value at measuring socket " l <" or "t > "						$U_{\text {t }}$ in V	5	3	2
current ramp time (± 20 \%)						t in ms	20	33	50
U_{t} in V	1	0.5	0.3	0.2	0.1	0.05	0.03		0.02
t in ms	100	200	333	500	1000	2000	3333		5000

The following applies: $\quad t=\frac{100 \mathrm{Vms}}{U_{\mathrm{t}}}$
Example: Measured $\quad U_{t}=5 \mathrm{~V}$
Results in $\quad t=\frac{100 \mathrm{Vms}}{5 \mathrm{~V}}=20 \mathrm{~ms}$

Characteristic curve generator (4)

Using the adjustable characteristic curve generator, the step height for positive and negative signals can be set separately, adjusted to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear. (Characteristic curve see page 5)

Amplitude limiter (5)

The command value is limited to ca. $\pm 110 \%$ of the nominal range.

Current controller (6)

The current is controlled according to the command value.

Power output stage (7)

The power output stage creates the clocked solenoid current for the proportional valve. The rated solenoid current is 1000 mA per output. the output stage outputs are short-cir-cuit-proof. The output stages are de-energized in case of an internal fault signal or if the release is missing.

Clock generator (8)

The clock generator creates the clock frequency f of the output stages.
$f=150 \mathrm{~Hz} \ldots 400 \mathrm{~Hz}$, adjustable by means of the potentiometer "f" (preset to 240 Hz)

Fault detection (10)

The solenoid line is monitored for cable break as well as overcurrent of the output stage.

Command value inversion (11)

The command value created internally from the input signal and the zero point offset signal can be inverted by an external signal.

Monitoring and limitation of the solenoid current (12)

The VT MUXA2-2 module provides for the monitoring and limitation of the solenoid current. The functioning is described in data sheet 30290 .

Technical Data (for applications outside these parameters, please consult us!)

Note!

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30228-U.

Characteristic curves

Dependency of the output current from the command value voltage

Setting range of the step height of the output current: $0 \ldots 500 \mathrm{~mA}$
Pre-setting ex works:
150 mA

Terminal assignment

Operating voltage	$+U_{B}$	1	7	Solenoid "b"
	0 V	2	8	
Release	U_{F}	3	9	Solenoid "a"
Command value input	$0 \mathrm{~V}(-\mathrm{IN})$	4	10	
	$\pm 10 \mathrm{~V}(+\mathrm{IN})$	5	11	n.c.
	Inversion	6	12	n.c.

Device view / unit dimensions (dimensions in mm)

LED displays:

(-)
Ready for operation (green)
G
Release (yellow)

Potentiometer:

Sw+ Step height for positive direction
Sw- Step height for negative direction
t < Ramp time for increasing command values
t > Ramp time for decreasing command values
f Frequency setting, 240 Hz pre-set, 150 Hz ... 400 Hz adjustable

Mode selector switch: without function
Measuring sockets:
t < Ramp time "up"
t > Ramp time "down"
I Actual current value
w Command value
wR Command value after ramp
\perp Measurement null

Important notes / setting information

Explosion hazard caused by incorrect assembly!

For achieving the prescribed safety when operating the one of the specified valves in the explosive area, it has to be ensure that the solenoid current does not exceed 1 A . For monitoring and limiting the valve current, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.
The VT-MSPA2-200 amplifier module and the VT-MUXA2-2 monitoring module may only be installed outside the explosive area!
The VT-MSPA2-200 amplifier module and the VT-MUXA2-2 monitoring module are not subject to the directive 94/9/EC (ATEX directive)!

More information:

- The amplifier module may only be wired when de-energized!
- Do not lay signal lines close to power cables and lines!
- Do not use free-wheeling diodes in the solenoid lines!
- The distance to aerial lines, radios, and radar systems has to be 1 m at least!
- Always shield command value lines, connect shielding to protective earthing (PE) on the module side!
- Also shield the solenoid lines!
- For solenoid lines up to 50 m in length, use the line type LiYCY $1.5 \mathrm{~mm}^{2}$!
- With greater lengths please consult us!
- In applications in connection with the VT-MUXA2-2 monitoring module, please observe the wiring specified in the block diagram of data sheet 30290 .
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Only carry out measurements at the module using instruments with $R_{\mathrm{i}}>100 \mathrm{k} \Omega$.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm !
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see data sheet 30750), sufficient for up to 3 amplifier modules
- In connection with the VT-MUXA2-2 monitoring module, the operating voltage has to be fed in via a capacitor module. The solenoid current connections to the VT-MUXA2-2 monitoring module must be led via ferrite sleeves. The ferrite sleeves are included in the scope of delivery of the VT-MUXA2-2 monitoring module.
- In the condition as supplied, the clock frequency is set to 240 Hz . Rotating the "f" potentiometer changes the valve hysteresis and may lead to disturbing noise developments.

Setting information

Prerequisite: The system-specific wiring must have been completed.

Signal	Setting
Ramp times:	- Set ramp time according to formula or table (see functional description "Ramp generator) and check it at the measuring sockets " $\mathrm{t}>$ " or " t <"
Step height:	- Apply the release signal - with an external command value provision of +0.3 V , set the measuring signal at " $w R$ " to +0.3 V - using the "Sw+" potentiometer, set the necessary positive step height - with an external command value provision of $-0,3 \mathrm{~V}$, set the measuring signal at " $w R$ " to $-0,3 \mathrm{~V}$ - using the "Sw-" potentiometer, set the necessary negative step height Note: With an external command value provision, it must at least result in $+0.3 \mathrm{~V} /-0.3 \mathrm{~V}$ at the "wR" measuring socket.
Clock frequency:	Condition as supplied: $f=240 \mathrm{~Hz}$ Note: The new setting of the frequency can be carried out with a digital multimeter that is able to measure frequencies. Measure at connection terminals 7 or 9 against 2 (ground).

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Rexroth

Bosch Group

Analog amplifier modules

Types VT 11131 and VT 11132

Series 1X

Table of contents

Contents
Features
Ordering code
Functional description
Block circuit diagram / pin assignment
Technical data
Output characteristic curve
Terminal assignment
Unit dimensions
Engineering / maintenance notes / supplementary information

Features

- Suitable for controlling proportional pressure control valves without electrical position feedback
- Differential input
- One clocked output stage
- Function generator
- Ramp generator with adjustable ramp time (up and down ramp can be adjusted separately)
- Adjustable current regulator
- Reverse voltage protection for voltage supply
- Indication of solenoid energisation by LED (brightness of LED proportional to solenoid current)

Ordering code

Functional description

These amplifier modules are suitable for controlling a proportional solenoid. The amplifier modules are to be snapped onto carrier rails according to EN 60715. The electrical connections are made by means of screw terminals. The modules are operated using 24 V DC.
The solenoid current (actual value) is measured and compared with the externally provided command value. Any differences occurring between actual and command value, caused e.g. by changes in the solenoid temperature or operating voltage, are balanced.

The activation of solenoid control is indicated by LED "H3", the brightness of which is proportional to the solenoid current. The following values can be adjusted from outside by means of assigned trimming potentiometers:

- Ramp time, separately for up and down ramp
(by means of R11, R12 $\rightarrow t_{\text {max }}$ approx. 5 s)
- Gradient of the output characteristic curve
(by means of R1, R2)

Block circuit diagram / pin assignment

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC +40\%-10 \%
Operating range:		
- Upper limit value	$u_{B}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{B}(t)_{\text {min }}$	21 V
Power consumption	$P_{\text {S max }}$	28 VA
Current consumption	$I_{\text {max }}$	1.3 A
Fuse		Electronic short-circuit protection of the solenoid
Inputs:		
- Command value (differential input)	$U_{\text {comm }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{i}}$ approx. $10 \mathrm{k} \Omega$
Adjustment ranges:		
- Output current	1	$I_{10 \%}$ to $I_{\text {max }}$
- Ramp time	t	approx. 50 ms to approx. 5 s
Outputs:		
- Solenoid current / resistance		
- with VT 11131	$I_{\text {max }}$	$1.6 \mathrm{~A} ; R_{(20)}=5.4 \Omega$
- with VT 11132	$I_{\text {max }}$	$1.6 \mathrm{~A} ; R_{(20)}=5.4 \Omega$
- Clock-pulse frequency of output stage		
- with VT 11131	f	$300 \mathrm{~Hz} \pm 15$ \%
- with VT 11132	f	$360 \mathrm{~Hz} \pm 15$ \%
Type of connection		6 screw terminals
Type of mounting		Carrier rail TH 35/7.5 to EN 60715
Type of protection		IP 20 to EN 60529
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$25 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range	$ง$	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	$ง$	-25 to $+85{ }^{\circ} \mathrm{C}$
Weight	m	0.13 kg

Note:

For details regarding environment simulation tests in the field of climate, see data sheet 30309-U (declaration on environmental compatibility).

Output characteristic curve

VT 11131 and VT 11132

Terminal assignment

Terminals 3 and 6: Differential input
Unit dimensions (Dimensions in mm)

Carrier rail TH 35/7,5
 to EN 60715

Adjustment/indication element	set to
Potentiometers:	
R1 $\rightarrow \quad I_{\text {max }}$	$1,6 \mathrm{~A}$
R2 $\rightarrow \quad I_{10 \%}$	$0,5 \mathrm{~A}$
R11 \rightarrow Up ramp	min
R12 $\rightarrow \quad$ Down ramp	min
LED Lamp:	
H3 \rightarrow Solenoid current	

Engineering / maintenance notes / supplementary information

- The amplifier module may only be wired when disconnected from the power supply.
- The distance to radio equipment must be sufficiently large (>> 1 m).
- Command value cables must always be shielded and not laid near power cables; shield solenoid cables.
- Do not use free-wheeling diodes in the solenoid cables.
- In the case of heavy fluctuations in the operating voltage, it may become necessary to install an external smoothing capacitor having a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module type VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules.
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analog amplifier module

Type VT 11118

Component Series 1X

Table of contents

Contents

Features

Ordering code 2
Functional description
Block circuit diagram / Pin assignment
Technical Data
Output characteristic curves
Terminal assignment
Unit dimensions
Engineering / maintenance notes / supplementary information

[^6]
Features

- Suitable for controlling direct operated proportional directional valves (type 4WRA, Component Series 1X only), pilot operated proportional directional valves (type .WRZ, from Component Series 5X) and proportional pressure reducing valves (type 3DREP 6) without electrical position feedback
- Selection of the valve type by means of change-over switch at the front
- Differential input for command value voltage $\pm 10 \mathrm{~V}$
- Enable inputs
- Polarity effect of command value voltage can be controlled via enable inputs
- Adjustable ramp generator
- 2 command value attenuators
- 2 output stages with fixed-frequency clocking
- DC/DC converter (L0 = M0)
- Reverse polarity protection for operating voltage
- Short-circuit-proof outputs
- LEDs: "power" - internal supply voltage (green)
$\begin{array}{ll}\text { "H1" } & \text { - Enable logic mode } 1 \text { (yellow) } \\ \text { "H2" } & \text { Enable logic mode } 2 \text { (yellow) }\end{array}$

Ordering code

	VT $11118 \frac{1}{1} \mathbf{1}$ / / *	
Amplifier module for direct operated proportional directional valves (type 4WRA, Component Series 1X only), pilot operated proportional directional valves (type .WRZ, from Component Series 5X) and proportional pressure reducing valves (type 3DREP 6)		
Component Series 10 to 19 (10 to 19: unchanged technical data and pin assignment)	$=6$	
Further Details in clear text		

Functional description

The amplifier module is to be snapped onto top hat rail according to EN 60715. The electrical connection is by means of screw terminals. The module is operated using 24 V DC. A power supply unit [1] provides internally required positive and negative supply voltages. As soon as the power supply unit is in operation, the green LED ("power") lights up.
One of the two solenoids ("a" or "b") of the valve is controlled by applying a command value voltage to the differential input and a positive enable voltage to one of the enable inputs. The solenoid current depends on the amount of the command value (see output characteristic curves) and on the position of the selector switch [13] for the valve type. Which of the two solenoids is controlled depends on the polarity of the command value and the activation of the enable inputs (see function table).
The solenoid current (actual value) is measured and compared with the externally provided command value; any differ-
ences caused e.g. by changes in temperature of the solenoid or changes in the supply voltage are corrected. Potentiometers "GW1" and "GW2" are used to set the maximum current of the solenoids and thus the maximum valve opening. Which of the potentiometers is activated by the enable inputs is indicated by the yellow LED. Potentiometer " S " (jump height) can be used to compensate for tolerances of valve overlap. However, care must be taken that the nominal voltage of the solenoids is not exceeded.
The amplifier module comprises a ramp generator [3]; the associated potentiometer "t" can be used to adjust the rise and fall time of the solenoid current.

The presettings for the valve type to be controlled can be selected at the front of the module.

Function table of enable inputs and solenoid control

Enable inputs		$\begin{array}{c}\text { Command value } \\ \text { voltage } U_{\text {comm }}\end{array}$	Active solenoid	Active LED	Mode		
Enable 1, $\boldsymbol{U}_{\mathrm{F} 1}$ active	Enable 2, $\boldsymbol{U}_{\mathrm{F} 1}$ active	No	$\begin{array}{c}>0 \mathrm{~V} \\ <0 \mathrm{~V}\end{array}$	$\begin{array}{l}\mathrm{b} \\ \mathrm{a}\end{array}$	H 1	$]$	1
:---:							
Yes							

Block circuit diagram / Pin assignment

1 Power supply
2 Differential amplifier
3 Ramp generator
4 Step function generator
5 Summator
6 Command value changeover and output stage enable
7 Short-circuit detector
8 Clock-pulse generator
9 Current regulator
10 Output stage

11 Solenoid current measurement
12 Overcurrent detector
13 Valve type selector switch
GW1 Command value attenuator 1
GW2 Command value attenuator 2
t Ramp time setting
S Jump height at $U_{\text {Comm }}= \pm 10 \mathrm{~V}$
H1 Enable logic mode 1
H2 Enable logic mode 2

Technical Data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC + 40\% (-10\%)
Operating range		
Upper limit value	$u_{0}(t)_{\text {max }}$	35 V
Lower limit value		
for 4WRA (Component Series 1X), .WRZ (Component Series 7X), 3DREP 6, (Component Series 2X)	$u_{0}\left(t^{\text {min }}\right.$	21 V
for .WRZ (Component Series 5X and 6X) and 3DREP 6 (Component Series 1X)	$u_{0}(t)_{\text {min }}$	24 V
Power consumption	$P_{\text {S }}$	approx. 30 VA
Current consumption	I	< 1,3 A
Fuse	I_{S}	3,5 A F (soldered in)
Inputs		
Command value (differential input)	$U_{\text {Soll }}$	0 to $\pm 10 \mathrm{~V} ; R_{\mathrm{e}}>50 \mathrm{k} \Omega$
Enable		
active	$U_{F 1} ; U_{F 2}$	$10 \mathrm{~V}<U_{\mathrm{F}}<35 \mathrm{~V} ; R_{\mathrm{i}}>3 \mathrm{k} \Omega$
not active	$U_{F 1} ; U_{F 2}$	$<8 \mathrm{~V}$
Adjustment ranges		
Jump height		0 to approx. 50% of $I_{\text {max }}$
Ramp time		approx. 50 ms to approx. 5 s
Outputs		
Solenoid current/resistance		
for 4WRA 6 (Component Series 1X)	$I_{\text {max }}$	$1,75 \mathrm{~A} ; R_{(20)}=5,4 \Omega$
for 4WRA 10 (Component Series 1X)	$I_{\text {max }}$	$1,75 \mathrm{~A} ; R_{(20)}=10 \Omega$
for .WRZ (Component Series 5X and 6X) and 3DREP 6 (Component Series 1X)	$I_{\text {max }}$	$1 \mathrm{~A} ; R_{(20)}=19,5 \Omega$
for .WRZ (Component Series 7X) and 3DREP 6 (Component Series 2X)	$I_{\text {max }}$	$1,75 \mathrm{~A} ; R_{(20)}=4,8 \Omega$
Clock-pulse frequency of the output stage		
for 4WRA 6 (Component Series 1X), .WRZ (Component Series 5X to 7X), 3DREP 6 (Component Series 2X)	f	$175 \mathrm{~Hz} \pm 10 \%$
for 4WRA 10 (Component Series 1X) and 3DREP 6 (Component Series 1X)	f	$100 \mathrm{~Hz} \pm 10 \%$
Type of connection		12 screw terminals
Type of mounting		Top hat rail TH 35-7.5 to EN 60715
Type of protection to EN 60529		IP 20
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$40 \times 79 \times 85,5 \mathrm{~mm}$
Operating temperature range	ϑ	0 to $+50{ }^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0,14 kg

Output characteristic curves (valid at enable voltage $U_{F 1}>10 \mathrm{~V}$)

Switch position 1 for valves

- 4WRA 6 (Component Series 1X),
- .WRZ (Component Series 7X)
- 3DREP 6 (Component Series 2X)

Switch position 2 for valves

- 4WRA10 (Component Series 1X)

Switch position 3 for valves

- .WRZ (Component Series 5X und 6X)
- 3DREP 6 (Component Series 1X)

Terminal assignment

Unit dimensions (Dimensions in mm)

Engineering / maintenance notes / supplementary information

- The amplifier module may only be wired when disconnected from the power supply.
- Ensure a sufficient distance to radio sources (>> 1 m).
- Shield solenoid cables, never lay solenoid cables near power cables; shield solenoid cables in pairs.
- Do not use free-wheeling diodes in solenoid cables.
- In the case of heavy fluctuations in the operating voltage, it may be required to use an external smoothing capacitor having a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommended: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Rexroth

Analog amplifier module

Type VT-MSRA1-1-1X

Component series 1X

(Similar figure)

Table of contents

Contents

Features
Ordering code
Functional description
Block diagram
Technical data
Terminal assignment
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling direct operated proportional directional valves without electric position feedback (type 4WRPH6...-2X...-855)
- Command value input $\pm 10 \mathrm{~V}$ (differential input)
- Characteristic curve correction by means of separately adjustable step levels and separately adjustable maximum values
- Enable input
- Reverse polarity protection for the voltage supply
- Power supply with DC/DC converter without raised zero point
- LED displays:
- Ready for operation (green)
- Enable (yellow)
- Ready for operation output

Ordering code

Functional description

General

The amplifier module is snapped onto top hat rails according to EN 60715. The electrical connection is established via screw terminals. The modules are operated with 24 V direct voltage.

Power supply [1]

The amplifier modules have a power supply unit with making current limiter. This unit supplies all internally required positive and negative supply voltages. The making current limiter prevents high making current peaks.

Command value provision

The internal command value signal is calculated from the total [3] of the external command value signal available at the differential input [2] and the zero point offset (zero point potentiometer "Zw").

Characteristic curve generator [4]

Using the adjustable characteristic curve generator, step level and maximum values for positive and negative signals can be set separately, adjusted to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear.

Amplitude limiter [5]

The internal command value is limited to ca. $\pm 110 \%$ of the nominal range.

Current controller [6]

The solenoid current is recorded, in the current controller compared with the actuating variable and the difference is compensated.

Power output stage [7]

The power output stage creates the clocked solenoid current for the proportional valve. The solenoid current is limited to 2.7 A per output. The output stage outputs are short-circuitproof. The output stages are de-energized in case of an internal fault signal or if the enable is missing.

Clock generator [8]

The clock generator creates the clock frequency "f" of the output stages depending on command value and operating voltage.

Enable function [9]

The enable function enables the power output stage and forwards the internal command value signal. The enable signal is displayed by an LED on the front plate.

Fault recognition [10]

The solenoid conductor is monitored for cable break as well as over-current of the output stage.

Command value inversion [11]

The command value created internally from the input signal and the zero point offset signal can be inverted by an external signal.

4 Characteristic curve generator

11 Inverting

3 Command value summing device

Technical data (For applications outside these parameters, please consult us!)

Operating voltage		U_{B}	24 VDC +40 \% -20 \%
Operating range:			
- Upper limit		$u_{B}(t)_{\text {max }}$	35 V
- Lower limit		$u_{B}(t)_{\text {min }}$	18 V
Power consumption		S	< 48 VA
Current consumption		I	$<2 \mathrm{~A}$
Fuse			Thermal overload protection (with restart if the value falls below the temperature threshold)
Inputs: - Analog			
- Command value (differential input) - Digital		$U_{\text {e }}$	0 to $\pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{e}}>50 \mathrm{k} \Omega$ (current input on request)
- Enable	ON	U	8.5 V to $U_{\mathrm{B}} ; \mathrm{R}_{\mathrm{e}}>100 \mathrm{k} \Omega$
	OFF	\cup	0 to $6.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{e}}>100 \mathrm{k} \Omega$
- Inverting	ON	U	8.5 V to $U_{\mathrm{B}} ; \mathrm{R}_{\mathrm{e}}>100 \mathrm{k} \Omega$
	OFF	\cup	0 to $6.5 \mathrm{~V} ; \mathrm{R}_{\mathrm{e}}>100 \mathrm{k} \Omega$
Setting ranges:			
- Clock frequency "f"			170 to 430 Hz (see last notice on page 6)
- Zero point command value (potentiometer "Zw")			± 30 \%
- Step level (potentiometer "Sw+" and "Sw-")			0 \% to 50 \%
- Amplitude attenuator (potentiometer "G+" and "G-")			0% to 110% (applies to the step level setting of 0%)
Outputs:			
- Power output stages		1	0 to 2.7 A; short-circuit-proof; clocked
- Ready for operation (on request)		U	$>16 \mathrm{~V}, 50 \mathrm{~mA}$ (in case of fault $\mathrm{U}<1 \mathrm{~V}, \mathrm{R}_{\mathrm{i}}=10 \mathrm{k} \Omega$)
- Measurement sockets			
- Actual value "I"		U	0 to $\pm 2.5 \mathrm{~V}(\mathrm{mV} \wedge \mathrm{mA})$
- Command value "w"		\cup	0 to $\pm 10 \mathrm{~V}$
Type of connection			12 screw terminals
Type of mounting			Top hat rail TH 35-7.5 according to EN 60715
Protection class according to EN 60529			IP 20
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)			$45 \times 79 \times 85.5 \mathrm{~mm}$
Admissible operating temperature range		$ง$	0 to $+60{ }^{\circ} \mathrm{C}$
Storage temperature range		$ง$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight		m	0.14 kg

Terminal assignment

Operating voltage	$+U_{B}$	1	7	Solenoid
	0 V	2	8	
Enable	$U_{\text {F }}$	3	9	n. c.
Differential input	Reference potential	4	10	
	$\pm U_{\text {Command }}$	5	11	n. c.
	Inverting	6	12	Ready for operation

Unit dimensions (dimensions in mm)

LED displays:

(3) Ready for operation (green)

G Enable (yellow)

Potentiometer:

Gw+ Amplitude attenuator for positive command values
Gw- Amplitude attenuator for negative command values
Sw+ Step level for positive direction
Sw- Step level for negative direction
Zw Zero point command value
f Frequency setting
Measurement sockets:
I Actual current value
w Command value
wR Command value before attenuator
\perp Measurement zero

Project planning / maintenance instructions / additional information

- The amplifier module may only be wired in de-energized condition.
- Do not lay lines close to power cables.
- Do not use free-wheeling diodes in the solenoid lines.
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- Always shield command value lines; connect shield to protective earth (PE) on the module side. Recommendation: Also shield the solenoid lines.

For solenoid lines up to a length of 50 m , use the cable type LiYCY $1.5 \mathrm{~mm}^{2}$. With greater lengths, please contact us.

- For switching command values, relays with gold contacts have to be used (low voltages, low currents).
- Only carry out measurements at the module using instruments with $R_{i}>100 \mathrm{k} \Omega$.
- For setting the potentiometers, use a screwdriver with a blade width of 4 mm .
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules
- In the condition as supplied, the setting of the clock frequency corresponds to the requirements of the valve 4WRPH6...-2X...-855. Rotating the " f " potentiometer changes the valve hysteresis and may lead to disturbing noise developments.

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Type VT-VSPA1-5..-1X/V0/RTP

Component series 1X

Features

Page

1
2
2
3
4
5
5

- Suitable for controlling direct operated proportional valves without electrical feedback
- Analog amplifiers in Europe format for installation in 19 " racks
- Differential input for command value voltage $0 \ldots+10 \mathrm{~V}$
- Ramp generator up and down can be set separately
- Zero point potentiometer
- Controlled output stage
- LED display:
- Supply voltage
- Ready for operation
- Ramp "Off"
- Solenoid current $I_{M}=0$

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For proportional valves, direct operated, without electrical feedback
VT-VSPA1-525-10/V0/RTP	0811405079	DBETX-1X...-25...
		DBE6X-1X...-25...
		3(2)FREX...-1X...-25...
VT-VSPA1-508-10/V0/RTP	0811405081	DBETX-1X...-8...
		DRE10Z-1X...-8...
		DRE6X-1X...-8...
		DBE6X-1X...-8...
		DBE10Z-1X...-8...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation.

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Current consumption, max. 0811405079	1.5 A (size 6) 2.5 A (size 10)
0811405081	1.25 A
Power consumption, max. 0811405079	35 VA (size 6) 60 VA (size 10)
0811405081	30 VA
Command value potentiometer	$R_{\mathrm{L}} \geqq 1 \mathrm{k} \Omega$ Supply: b/z 32, +10 V/20 mA
Input signals	$\begin{aligned} & \left.\begin{array}{l} \text { b10: }+10 \mathrm{~V} \\ \text { z10: +10 V } \\ \text { z16: +10 } \mathrm{V} \\ \text { z18: Diff. } 0 \mathrm{~V} \end{array}\right\} \text { Differential input } \end{aligned}$
External ramp switch-off	b20: $6 . . .40 \mathrm{~V}=($ nom. $10 \mathrm{~V}=)$
Monitor signal ramp	z20: 0... 10 V
Cable lengths between amplifier and valve	Solenoid cable: up to $20 \mathrm{~m} 1.5 \mathrm{~mm}^{2}$ 20 to $60 \mathrm{~m} 2.5 \mathrm{~mm}^{2}$
Special features	Inputs and outputs short-circuit-proof Clocked output stage Fast energization for short actuating time
LED displays	```yellow: Ramp OFF yellow: Solenoid current \(I_{M}=0\) green: \(U_{B} O N\) red: \(\quad U_{B}<U_{B} \min\)```
Valve setting time	50 ms with 100 signal step
Valve hysteresis \%	< 4
Ramp times	0.05...5
Adjustment	Zero point valve, sensitivity, ramp times, dither amplitude
Format of the printed circuit board mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.32 kg

Notice:

Power zero b2 and control zero b12 are to be bridged.
If the power supply unit is $<1 \mathrm{~m}$ away, directly to DIN connector.
In case of distances $>1 \mathrm{~m}$, lead the control zero separately to the ground.

Adjustment of the cards

Zero point: \quad For the adjustment, a command value $U_{E} \sim 300 \mathrm{mV}$ is specified.
Sensitivity (max.): For the adjustment, a command value $U_{\mathrm{E}}=10 \mathrm{~V}$ is specified.

Use of ramps

Setting of ramp UP (accelerations) and ramp DOWN (braking)
via 1 trimming potentiometer each.
Ramp ON if open at b20. Ramp OFF if b20 $U>6 \mathrm{~V}$.
With ramp OFF, a previously started ramp is canceled.
Transition to the signal end value is effected as step.

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifiers for proportional pressure valves

Type VT-VSPA1-10, VT-VSPA1-11

RE 30100

Edition: 2013-04
Replaces: 03.11

- Component series 1X
- Analog, euro-card format
- Suitable for controlling proportional pressure valves:
- (Z)DRE 6...-1X,
- ZDRE 10...-2X,
- 3DRE(M) 10...-7X,
- 3DRE(M) 16...-7X,
- DRE(M) 10...-6X,
- DRE(M) 25...-6X,
- DRE(M) 32...-6X,
- Z)DBE6...-2X
Features 1
Ordering code 2
Function 2
Block diagram 4
Setting and operating controls 5
Technical data 6
Dimensions 7Project planning / maintenance instructions /7

Contents

additional informationaddional information

- Differential input (0 to +10 V)
- Current input (4 to 20 mA)
- Ramp generator with separately adjustable ramp times "up/down"
- External ramp time setting
- Enable input
- Clocked power output stage
- "Ready for operation" message
- Reverse polarity protection of the supply voltage
- Short-circuit protection and cable break detection of the solenoid conductor

Ordering code

01			03	04		05		06
VT-VSPA1	-	-	1X	/	Vo	/	0	

01	Valve amplifier for proportional pressure valves, analog, euro-card format	VT-VSPA1
02	For controlling the valve (Z)DRE 6...-1X	10
	For controlling the valves: ZDRE 10...-2X, 3DRE(M) 10...-7X, 3DRE(M) 16...-7X, DRE(M) 10...-6X, DRE(M) 25...-6X, DRE(M) 32...-6X, (Z)DBE6 $\ldots-2 \mathrm{X}$,	11

03	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	$\mathbf{1 X}$

04	Version: Standard	V0
05	Standard option	$\mathbf{0}$
06	Further details in the plain text	

Accessories

- Open card holder VT 3002-1-2X/48F (see data sheet 29928)

Function

Power supply unit (1)

The amplifier has a power supply unit with making current limiter. This unit supplies all internally required positive and negative supply voltages.

Command value specification (2), (3), (4), (5)

The internal command value signal is calculated from the total (5) of the external command value signal available at the differential input (2) or at the current input (3) and the zero point offset (4) (zero point potentiometer "Zw"). The following applies:

Standard values	Current input	Differential input	Command value socket
0%	4 mA	0 V	0 V
$+100 \%$	20 mA	+10 V	+10 V

There is no switch-over between current and voltage input. The inputs are permanently available (see block diagram).

Enable function (6)

The enable function (6) enables the power output stage and forwards the internal command value signal to the ramp generator (7). The enable signal is indicated by an LED. If enable is connected (via 24 V input or jumper J 1), the internal command value is changed (with any kind of
command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator (7)

The ramp generator (7) limits the rise of the control output. The downstream amplitude limiter (11) does not extend or shorten the ramp time. Using the jumper J3, the ramp time is changed by the factor 10 .
The following applies:

J3	$\boldsymbol{U}_{\text {socket }} / \mathbf{V}$	$\mathbf{1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0 2}$
Open* *	t / ms	100	500	1000	5000
Closed	t / s	1	5	10	50

* Basic setting (condition as supplied)

Formula:

$$
t=\frac{100 \mathrm{~ms}}{U_{\text {socket }} / V}
$$

Ramp on/off (8)

Using jumper J2 or the "Ramp on/off" input (8) (see terminal assignment), the ramp time is set to a minimum (< 50 ms).

An activated ramp is indicated by an LED.

"Ramp on/off" input	J2	LED "T"	Ramp
0 V	Open	On	On
+24 V	Open	Off	Off
0 V	Closed	Off	Off
+24 V	Closed	On	On

External ramp time setting (9)

Using an external potentiometer or external voltage specification (according to the formula specified in section "Ramp generator"), the internally set ramp time can be extended. The setting can be verified by means of the measuring sockets. In case of a cable break, the internal default setting will be valid automatically.

The following applies to the external potentiometer:

	Setting range*	
\boldsymbol{R}	Min. ramp time (potentiometer at left turn)	Max. ramp time (rotary angle of the potenti- ometer at approx. 95 \%)
$1 \mathrm{k} \Omega$	100 ms	1 s
100Ω	1 s	10 s

* The minimum ramp time can only be reached if the internally set ramp time is lower, i.e. the corresponding potentiometer is at the left turn. The specified ramp times are true for $\mathrm{J} 3=$ open.

Characteristic curve generator (10)

Using the "Gw" potentiometer (11), the maximum current for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value pressure characteristic curve is created. For this purpose, the characteristic curve generator (10) has to be activated using jumper J4 and jumper J5 has to be opened.
In order to deactivate the characteristic curve, jumper J4 has to be opened and jumper J5 has to be closed.

Amplitude limiter (11)

The internal command value is limited to approx. $+120 \%$ of the nominal range.

Command value output (12)

$0 \% \triangleq 0 \mathrm{~V}+100 \% \triangleq+10 \mathrm{~V}$

Clock generator (13)

In the clock generator (13), a frequency for the output stage is generated. The frequency is influenced by the supply voltage.
Via the jumper J6, a frequency depending on the command value signal is generated. For a universal use, jumper J6 is to be opened.
A frequency adjustment via the "frequency" potentiometer can be realized by means of jumper J7.

Example 1:
(Frequency adjustment via "frequency" potentiometer - without command value dependancy; J6 = open, J7 = closed)
Setting range for VT-VSPA1-10: $180 \mathrm{~Hz} \ldots 400 \mathrm{~Hz} \pm 15 \%$ Setting range for VT-VSPA1-11: $210 \mathrm{~Hz} . . .310 \mathrm{~Hz} \pm 15 \%$

Example 2:
(command value-dependent frequency $-\mathrm{J} 6=$ closed)

* Tolerance: ± 15 \%

Via the "frequency" potentiometer, the frequency can be corrected by $> \pm 10$ \% (J6 and J7 closed).

Power output stage (14)

The power output stage creates a clocked solenoid current for the proportional valve.
The output stage output is de-energized in case of an internal fault signal or iif it has not been enabled. The output stage output is short-circuit-proof.

Actual value output (15)

$1 \mathrm{~mA}\left(I_{\text {solenoid }}\right) \xlongequal{ } \xlongequal{\mathrm{mV}}$ (actual value output)

Fault recognition (16)

The solenoid conductor is monitored for cable break and short-circuits. If there is no fault, a voltage $>16 \mathrm{~V}$ is output at the "ready-for-operation" output and the "ready-for-operation" LED is illuminated. In case of a fault, the voltage is $<1 \mathrm{~V}$ and the LED flashes.

Block diagram

Setting and operating controls

Measuring sockets

$\mathrm{t}<$	Ramp time "Ramp up"
$\mathrm{t}>$	Ramp time "Ramp down"
w	Command value output $(0 \ldots 10 \mathrm{~V})$
l	Actual value $(1 \mathrm{mV} \hat{=} 1 \mathrm{~mA})$
f	Clock frequency of the output stage
\perp	Reference for outputs

Additional potentiometer

"frequency" Frequency setting (to be activated using J7)

LED

(:) Ready-for-operation LED

- Enable LED ("enable")

T "Ramp on active" LED
w1-w4 "Command value call-up active" LEDs (only with A4 variant)

Jumpers

			VT-VSPA1-10	VT-VSPA1-11
	Open	Not enabled	-	-
	Closed	Enabled		
J2		Ramp function on/off ($\bullet=$ open) (see table under "Ramp on/off" on page 3)		
13	Open	Ramp time $20 \mathrm{~ms} \ldots 5 \mathrm{~s}$	-	-
	Closed	Ramp time 200 ms ... 50 s		
	Open	Command value pressure characteristic curve correction inactive		
J4	Closed	Command value pressure characteristic curve correction active	-	-
J5	Open	Command value pressure characteristic curve correction active	-	-
	Closed	Command value pressure characteristic curve correction inactive		
J6	Open	Command value-dependent frequency deactivated	-	
J6	Closed	command value-dependent frequency activated (ZDRE 10, 3DRE(M) size 10 and size 16)		-
17	Open	Frequency adjustment via "frequency" potentiometer deactivated		-
J7	Closed	Frequency adjustment via "frequency" potentiometer activated	-	
J8	Closed	Reserve jumper	-	-

[^7]Technical data (for applications outside these parameters, please consult us!)

			VT-VSPA1-10	VT-VSPA1-11
Operating voltage		U_{B}	24 VDC + 40 \% - 20 \%	
Operating range	Upper limit value	$u_{B}(\mathrm{t})_{\text {max }}$	35 V	
	Lower limit value	$u_{\mathrm{B}}(\mathrm{t})_{\text {min }}$	18 V	
Power consumption		$P_{\text {S }}$	< 24 VA	
Current consumption		1	$<2 \mathrm{~A}$	
Fuse		$I_{\text {S }}$	2 A medium time-lag, exchangeable	
Inputs				
Analog	Differential input	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}>50 \mathrm{k} \Omega$	
	Current input	$I_{\text {e }}$	$4 \ldots 20 \mathrm{~mA}$, load $R_{\mathrm{B}}=100 \mathrm{k} \Omega$	
	Ramp time external	$U_{\text {e }}$	$0 \vee \ldots+5 \mathrm{~V}, R_{\mathrm{e}}>10 \mathrm{k} \Omega$	
Digital	Ramp call-ups	U	$8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow$ call-up operated, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$ $0 \ldots 6.5 \mathrm{~V} \rightarrow$ no call-up, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$	
	Ramp on/off	U	$\begin{aligned} & 8.5 \mathrm{~V} \ldots \mathrm{U}_{\mathrm{B}} \rightarrow \text { ramp on, } R_{\mathrm{e}}>100 \mathrm{k} \Omega \\ & 0 \ldots 6.5 \mathrm{~V} \rightarrow \text { ramp off, } R_{\mathrm{e}}>100 \mathrm{k} \Omega \end{aligned}$	
	Enable	U	$\begin{aligned} & 8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow \mathrm{ON}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \\ & 0 \ldots 6.5 \mathrm{~V} \rightarrow \mathrm{OFF}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \end{aligned}$	
Clock frequency		f	$330 \mathrm{~Hz} \pm 10 \%$, with J6 = open and $\mathrm{J} 7=$ closed	$250 \mathrm{~Hz} \pm 10 \%$ with J 6 and $\mathrm{J} 7=$ open
Setting ranges				
Zero adjustment (potentiometer "Zw")			+30\%	
Ramp times	tentiometer "t <" and "t >")	t	$20 \mathrm{~ms} \ldots 5 \mathrm{~s}$, switchable to $0.2 \mathrm{~s} \ldots 50 \mathrm{~s}$	
Amplitude	uator (potentiometer "Gw")		$0 \ldots+120$ \%	
Frequency a (J7 operated)	stment with potentiometer "frequency"	f	See explanation: Clock generator, page 3	
Outputs				
Command value signal		U	$0 \ldots+10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$	
Actual value signal		U	$0 \ldots+10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$	
Ready for operation		U	$\begin{gathered} >16 \mathrm{~V}, I_{\max }=50 \mathrm{~mA} \\ \text { (in case of a fault: } U<1 \mathrm{~V}, R_{\mathrm{i}}=10 \mathrm{k} \Omega \text {) } \end{gathered}$	
Regulated voltage		U	$+10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=25 \mathrm{~mA}$, short-circuit-proof	
Ramp signals measuring socket		U	$\begin{aligned} & +100 \mathrm{mV} \ldots+5 \mathrm{~V} \pm 10 \% \\ & +10 \mathrm{mV} \ldots+100 \mathrm{mV} \pm 50 \% \end{aligned}$	
Power output stage		1	0 ... 1.9 A, short-circuit-proof, clocked	
Type of connection			48 pin male multipoint connector, DIN 41612, design F	
Card dimensions			Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494	
Admissible operating temperature range		ง	$0 \ldots 50{ }^{\circ} \mathrm{C}$	
Storage temperature range		ง	$-25 \ldots+85^{\circ} \mathrm{C}$	
Weight		m	0.15 kg (net)	

Dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be assembled when de-energized.
- No connectors with free-wheeling diodes or LED displays must be used for the solenoid connection.
- Only carry out measurements at the card using instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents).
- Always shield command value lines, connect shielding to earth on the card-side, other side open. If no system earth exists, connect $0 \vee$ operating voltage.
- Recommendation:

Also shield the solenoid conductors. For solenoid conductors up to 50 m in length, use the line type LiYCY $1.5 \mathrm{~mm}^{2}$. With greater lengths, please contact us.

- The distance to aerial lines, radios, and radar systems must at least be 1 m .
- Do not lay solenoid conductors and signal lines near power lines.
- If the differential input is used, both inputs must always be connected or disconnected at the same time.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.
It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifier for proportional pressure valves

Type VT-VSPA1-2

RE 30115

Edition: 2013-02
Replaces: 02.06

Features

- Differential input ($0 \ldots+10 \mathrm{~V}$)
- Current input (4 ... 20 mA)
- Ramp generator with separately adjustable ramp times "up/down"
- External ramp time presetting
- Enable input
- Clocked power output stage
- "Ready for operation" message
- Reverse polarity protection of the supply voltage
- Short-circuit protection and cable break detection of the solenoid conductor
- Component series 1 X
- Analog, Euro-card format
- Suitable for controlling proportional pressure valves:
- DBET-6X,
- DBEM...-7X

Contents

Features 1
Ordering code 2
Function 2
Block diagram 4
Setting and operating controls 5
Technical data 6
Unit dimensions 7
Project planning information/maintenance instructions/ additional information 7

Ordering code

01		02		03		04		05		06
VT-VSPA1	-	2	-	1X	/	vo	/		/	

01	Valve amplifier for proportional pressure valves, analog, Euro-card format	VT-VSPA1
02	For controlling direct operated proportional pressure valves DBET-6X and DBEM...-7X	$\mathbf{2}$
03	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	$\mathbf{1 X}$
04	Version: Standard	V0
005	Option: Standard	$\mathbf{0}$
	Option: 4 command value call-ups	A4
06	Further details in the plain text (additional functions on request)	*

Accessories

- Open card holder VT 3002-1-2X/48F
(see data sheet 29928)

Function

Power supply unit (1)

The amplifier has a power supply unit with making current limiter. This unit supplies all internally required positive and negative supply voltages.

Command value specification (2), (3), (4) ${ }^{1)}$, (5), (6)

The internal command value signal is calculated from the total (6) of the external command value signal or the calledup signal (4) ${ }^{1)}$ available at the differential input (2) or at the current input (3) and the zero point offset (5) (zero point potentiometer "Zw").
The following applies:

Standard values	Current input	Differential input	Command value socket
0%	4 mA	0 V	0 V
$+100 \%$	20 mA	+10 V	+10 V

There is no switch-over between current and voltage input. The inputs are permanently available (see block diagram).

Command value call-ups (4) ${ }^{1)}$

Four command value call-ups "w1" to "w4" can be called up. The external voltages (command values 1 to 4) are either defined directly by the voltage output +10 V or by external potentiometers. If these command value inputs are directly connected to the regulated voltage, the command values are set at the potentiometers "w1" to "w4". When using external potentiometers, the internal potentiometers will function as attenuators or limiters.

Only one call-up can be operated at the same time. If several call-ups are operated simultaneously, call-up "w1" has the lowest priority and call-up " w 4 " has the highest priority. The active call-up is indicated by a yellow LED.

Enable function (7)

The enable function (7) enables the power output stage and forwards the internal command value signal to the ramp generator (8). The enable signal is indicated by an LED. If the release is connected (via 24 V input or jumper J 1), the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator (8)

The ramp generator (8) limits the rise of the control output. The downstream amplitude limiter (12) does not extend or shorten the ramp time. Using the jumper J3, the ramp time is changed by the factor 10 .

The following applies:

J3	$\boldsymbol{U}_{\text {socket }} / \mathbf{V}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0 . 2}$	$\mathbf{0 . 1}$	$\mathbf{0 . 0 2}$
Open* *	t / ms	50	100	500	1000	5000
Closed	t / s	0.5	1	5	10	50

* Basic setting (condition as supplied)

[^8]Bosch Rexroth AG, RE 30115, edition: 2013-02

Formula:

$$
t=\frac{100 \mathrm{~ms}}{U_{\text {socket }} / V}
$$

Ramp on/off (9)

Using jumper J2 or the "Ramp on/off" input (9) (see terminal assignment), the ramp time is set to a minimum ($<50 \mathrm{~ms}$). An activated ramp is indicated by an LED.

"Ramp on/off" input	J2	LED "T"	Ramp
0 V	Open	On	On
+24 V	Open	Off	Off
0 V	Closed	Off	Off
+24 V	Closed	On	On

Ramp time setting external (10)

Using an external potentiometer or an external voltage presetting (according to the formula in section "Ramp generator"), the internally set ramp time can be extended. The setting can be verified at the measuring sockets. In case of a cable break, the internal default setting will be valid automatically.

The following applies to the external potentiometer:

	Setting range* *	
\boldsymbol{R}	Min. ramp time (potentiometer at left turn)	Max. ramp time (rotary angle of potentiome- ter at approx. 95 \%)
$1 \mathrm{k} \Omega$	100 ms	1 s
100Ω	1 s	10 s

* The minimum ramp time can only be reached if the internally set ramp time is lower, i.e. the corresponding potentiometer is at the left turn. The specified ramp times are true for $\mathrm{J} 3=$ open.

Characteristic curve generator (11)

The maximum current for the solenoid is set using the "Gw" (12) potentiometer. In the characteristic curve generator (11), the command value signal is changed so that a linear command value pressure characteristic curve (correction characteristic curve for DBET-6X and DBEM...-7X) results. For this purpose, jumper J 4 has to be closed and jumper J5 has to be opened.
In order to deactivate the correction characteristic curve, jumper J 4 has to be opened and jumper 5 has to be closed.

Amplitude limiter (12)

The internal command value is limited to approx. $+120 \%$ of the nominal range.

Command value output (13)

$0 \% \triangleq 0 \mathrm{~V} \quad+100 \% \triangleq+10 \mathrm{~V}$

Clock generator (14)

In the clock generator (14), a frequency for the output stage is generated. The frequency is influenced by the supply voltage.

A frequency dependent on the command value signal is generated using the jumper J6 (for DBET-6X and DBEM...-7X). For a universal use, jumper J6 is to be opened. A frequency adjustment via the "frequency" potentiometer can be realized by means of jumper $J 7$.
Example 1:
(frequency adjustment via "frequency" potentiometer - without command value dependency; J6 = open, J7 = closed)
Setting range: $210 \mathrm{~Hz} \ldots 310 \mathrm{~Hz} \pm 15$ \%
Example 2:
(command-value dependent frequency - J6 closed)

* Tolerance: ± 15 \%

Via the "frequency" potentiometer, the frequency can be corrected by > ± 10 \% (J6 and J7 closed).

Power output stage (15)

The power output stage creates a clocked solenoid current for the proportional valve.
The output stage output is de-energized in case of an internal fault signal or if the release is missing. The output stage output is short-circuit-proof.

Actual value output (16)

$1 \mathrm{~mA}\left(I_{\text {solenoid }}\right) \triangleq 1 \mathrm{mV}$ (actual value output)

Fault recognition (17)

The solenoid conductor is monitored for cable break and short-circuits. If there is no fault, a voltage $>16 \mathrm{~V}$ is output at the "ready-for-operation" output and the "ready-for-operation" LED is illuminated. In case of a fault, the voltage is $<1 \mathrm{~V}$ and the LED flashes.

Block diagram

Setting and operating controls

Measuring sockets

$\mathrm{t}<$	Ramp time "Ramp up"
$\mathrm{t}>$	Ramp time "Ramp down"
w	Command value output $(0 \ldots 10 \mathrm{~V})$
l	Actual value $(1 \mathrm{mV} \triangleq 1 \mathrm{~mA})$
f	Clock frequency of the output stage
\perp	Reference for outputs

Additional potentiometer

"frequency" Frequency setting (to be activated using J7)

LED
() Ready-for-operation LED

- Enable LED ("enable")

T "Ramp on active" LED
w1-w4 "Command value call-up" LEDs (only with A4 variant)

J1	Open Closed	-	No enabled Enable activated	
J2			Ramp function on/off ($\cdot=$ open) (see table under "Ramp on/off" on page 3)	
J3	Open Closed	-	Ramp time $20 \mathrm{~ms} . .5 \mathrm{~s}$ Ramp time $200 \mathrm{~ms} . .50 \mathrm{~s}$	
J4	Open Closed	-	Command value pressure characteristic curve correction inactive Command value pressure characteristic curve correction active	J4 and J5 must not be simultaneously closed.
J5	Open Closed	-	Command value pressure characteristic curve correction active Command value pressure characteristic curve correction inactive	
J6	Open Closed	-	Command value-dependent frequency deactivated Command value-dependent frequency activated (for DBET-6X and DBEM...-7X)	
J7	Open Closed	-	Frequency adjustment via "frequency" potentiometer deactivated Frequency adjustment via "frequency" potentiometer activated	
J8	Closed	-	Reserve jumper	

[^9]
Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	$24 \mathrm{VDC}+40$ \% - 20 \%
Operating range		
Upper limit value	$u_{B}(\mathrm{t})_{\text {max }}$	35 V
Lower limit value	$u_{B}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	< 24 VA
Current consumption	1	$<2 \mathrm{~A}$
Fuse	Is	2 A medium time-lag, exchangeable
Inputs, analog		
Command values 1 to 4 (potentiometer inputs) *	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Differential input	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}>50 \mathrm{k} \Omega$
Current input	$I_{\text {e }}$	$4 \ldots 20 \mathrm{~mA}$, load $R_{\mathrm{B}}=100 \Omega$
Ramp time external	$U_{\text {e }}$	$0 \ldots+5 \mathrm{~V}, R_{\mathrm{e}}>10 \mathrm{k} \Omega$
Inputs, digital		
Command value call-ups (only with option A4)	U	$8.5 \mathrm{~V} \ldots \mathrm{U}_{\mathrm{B}} \rightarrow>$ call-up operated, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
	U	$0 \ldots 6.5 \mathrm{~V} \rightarrow$ no call-up, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Ramp on/off	U	$8.5 \mathrm{~V} \ldots \mathrm{U}_{\mathrm{B}} \rightarrow$ ramp on, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
	U	$0 \mathrm{~V} \ldots 6.5 \mathrm{~V} \rightarrow$ ramp off, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Release	U	$8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow \mathrm{ON}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$
	U	$0 \ldots 6.5 \mathrm{~V} \rightarrow$ OFF, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Clock frequency	f	$250 \mathrm{~Hz} \pm 10$ \% (J6 and J7 = open)
Setting ranges		
Zero adjustment (potentiometer "Zw")		+30\%
Command values (potentiometers "w1" to "w4")		$0 . .100 \%$
Ramp times (potentiometer "t <" and "t >")	t	$20 \mathrm{~ms} \ldots 5 \mathrm{~s}$, switchable to $0.2 \mathrm{~s} \ldots 50 \mathrm{~s}$
Amplitude attenuator (potentiometer "Gw")		$0 \ldots+120$ \%
Frequency adjustment with "frequency" potentiometer (J7 operated)	f	See explanation: Clock generator, page 3
Outputs		
Command value signal	U	$0 \ldots+10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Actual value signal	U	$0 \ldots+10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Ready for operation	U	$>16 \mathrm{~V}, I_{\text {max }}=50 \mathrm{~mA}$
		(in case of faults: $U<1 \mathrm{~V}, R_{\mathrm{i}}=10 \mathrm{k} \Omega$
Regulated voltage	U	$+10 \mathrm{~V} \pm 2 \%, I_{\max }=25 \mathrm{~mA}$, short-circuit-proof
Ramp signals measuring socket	U	+100 mV ... $+5 \mathrm{~V} \pm 10 \%$,
		+10 mV ... +100 mV ± 50 \%
Power output stage	1	0 ... 1.9 A, short-circuit-proof, clocked
Type of connection		48-pin male multipoint connector, DIN 41612, design F
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Operating temperature range	$ง$	$0 \ldots 50{ }^{\circ} \mathrm{C}$
Storage temperature range	$ง$	$-25 \ldots+85^{\circ} \mathrm{C}$
Weight	m	0.15 kg (net)

Unit dimensions (dimensions in mm)

Project planning information/maintenance instructions/additional information

- In the condition as supplied the parameters are set as follows: Correction characteristic curve and command valuedependent frequency $=$ active (for valves DBET-6X and DBEM...-7X), max. ramp time $=5 \mathrm{~s}$, pilot current $=100 \mathrm{~mA}$, max. output current = 1.6 A.
- The amplifier card may only be assembled when de-energized.
- No connectors with free-wheeling diodes or LED displays must be used for the solenoid connection.
- Only carry out measurements at the card using instruments $\mathrm{R}_{\mathrm{i}}>100 \mathrm{k} \Omega$.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents).
- Always shield command value lines, connect shielding to earth on the card-side, other side open. If no system earth exists, connect $0 \vee$ operating voltage.
Recommendation:
Shield solenoid conductors as well. For solenoid conductors up to 50 m in length, use the line type LiYCY $1.5 \mathrm{~mm}^{2}$. With greater lengths, please contact us.
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- Do not lay solenoid conductors and signal lines near power lines.
- If the differential input is used, both inputs must always be connected or disconnected at the same time.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.
It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifier for proportional directional valves and proportional pressure valves

RE 30110

Edition: 2013-04
Replaces: 05.12

Features

- Differential input ($\pm 10 \mathrm{~V}$)
- Four callable command value inputs ($\pm 10 \mathrm{~V}$)
- Current input ($4 \ldots 20 \mathrm{~mA}$)
- Inversion of the internal command value signal via 24 V input or jumper
- Selection of ramp time via quadrant recognition (24 V input) or ramp time call-ups (24 V inputs) with option T5
- Selection of the ramp time range via jumper
- Characteristic curve correction by means of separately adjustable step levels and maximum values
- Enable input
- "Ramp on/off" input
- "Ready for operation" output signal
- Switchable measuring socket with option T5
- Reverse polarity protection for the voltage supply
- Power supply with DC/DC converter without raised zero point
- Component series 2 X
- Analog, euro-card format
- Suitable for controlling proportional directional valves:
- 4WRA 6...-2X, 4WRA 10...-2X,
- 4WRZ...-7X,
and proportional pressure valves:
- 3DREP 6..2X

Contents

Features 1
Ordering code 2
Function 2
Block diagram/pin assignment, option T1 4
Block diagram/pin assignment, option T5 5
Technical data 6
Characteristic curves 7
Display/adjustment elements, option T1 8
Display/adjustment elements, option T5 9
Dimensions 11
Project planning / maintenance instructions / additionalinformation11

Notice:

When using the VT-VSPA2-1-2X amplifier card as replacement for VT 3000-3X, VT 3006-3X, VT 3013-3X, VT 3014-3X, VT 3017-3X, VT 3018-3X, VT 3026-3X, VT-VSPA2-1-1X/... or VT-VSPA2-50-1X/..., make sure to observe the configuration and setting information according to the 30110-Z additional information.

Ordering code

01	Valve amplifier for proportional directional valves and proportional pressure valves, analog, Euro-card format	VT-VSPA2
02	For controlling proportional directional valves 4WRA $6 \ldots-2 X, 4 W R A 10 \ldots-2 X$ and $4 W R Z \ldots-7 X$ as well as proportional pressure valves 3DREP 6..2X	1
03	Component series 20 to 29 (20 to 29: Unchanged technical data and pin assignment)	2X
04	Version: Standard	vo
05	Option: With one ramp time	T1
	Option: With five ramp times	T5
06	Further details in the plain text	*

Accessories

- Open card holder VT 3002-1-2X/48F (see data sheet 29928)

Function

Power supply unit [1]

The amplifier card has a power supply unit with making current limiter. This unit supplies all internally required positive and negative supply voltages.

Command value specification

The internal command value signal is calculated from the total (summation [6]) of the external command value signal available at the differential input [2] and at the current input [3], the called-up signal [4] and the zero point offset [5] (zero point potentiometer "Zw").

The following applies:

Standard values	Current input	Differential input	Command value measur- ing socket	Flow direction
-100%	4 mA	-10 V	-10 V	P to B, A to T
0%	12 mA	0 V	0 V	
100%	20 mA	10 V	10 V	P to A, B to T
0%	$<1 \mathrm{~mA} \mathrm{1)}$		0 V	

1) If the current input is not wired-up or if the cable of the current command value is broken, the resulting internal command value signal is 0%.

There is no switch-over between current and voltage input. The inputs are permanently available (see block diagram).

Command value call-ups [4]

Four command value signals "w1" to "w4" can be called up. The external command value voltages (command values 1 to 4) are either defined directly by the regulated voltage outputs +10 V and -10 V or via external potentiometers. If these command value inputs are directly connected to the regulated voltages, the command values are set at the potentiometers " $w 1$ " to " $w 4$ ". When using external potentiometers, the internal potentiometers will function as attenuators or limiters.
Only one call-up can be operated at the same time. If several call-ups are operated simultaneously, call-up "1" has the lowest priority and call-up "4" has the highest priority. The respective active call-up is indicated via a yellow LED on the front plate.

Command value inversion [7]

The command value created internally from the input signals, the command value call-ups and the zero point offset signal can be inverted by an external signal or jumper J 1 . The inversion is indicated by an LED ("-1") on the front plate.

Enable function [8]

The enable function enables the power output stages and forwards the internal command value signal to the ramp generator. The enable signal is indicated by an LED on the front plate. If enable is connected, the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator [9]

The ramp generator limits the rise of the control output. The downstream step functions and amplitude attenuators do not extend or shorten the ramp time.
Using the "Ramp on/off" signal or the jumper J2, the ramp time is set to a minimum ($<2 \mathrm{~ms}$) (ramp off).
External ramp time setting:
Using an external potentiometer, the internally set ramp time can be extended. The setting can be verified by means of the measuring socket. In case of a cable break, the internal default setting will be valid automatically.

Note for setting and measuring the ramp time:

Value at measuring socket "t" (T1) / "v" (T5)		$\boldsymbol{U}_{\mathrm{t}} / \mathbf{V}$	5	3	2	
Current ramp time ($\mathbf{\pm 2 0} \%$)			$\boldsymbol{t} / \mathbf{m s}$	20	33	50
$\boldsymbol{U}_{\mathrm{t}} / \mathbf{V}$ 1 0.5 0.3 0.2 0.1 0.05 0.03 0.02 $\boldsymbol{t} / \mathbf{m s}$ 100 200 333 500 1000 2000 3333 5000						

By closing the jumper J3, the ramp times specified above can be increased tenfold.

Characteristic curve generator [10]

Using the adjustable characteristic curve generator, the step level and maximum values for positive and negative signals can be set separately according to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear.

Amplitude limiter [11]

The internal command value is limited to approx. $\pm 110 \%$ of the nominal range.

Clock generator [13]

The clock generator creates the clock frequency of the output stages. The clock signal can be switched in three basic frequency ranges using jumpers.

Power output stage [16]

The power output stage creates the clocked solenoid current for the proportional valve. The solenoid current is limited to 2.5 A per output. The output stage outputs are short-circuit-proof. The output stages are de-energized in case of an internal fault signal or if they have not been enabled.

Fault recognition [17]

Monitors over-current of the output stage.
[] = Assignment to the block diagrams on pages 4 and 5

Block diagram/pin assignment, option T1

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	$24 \mathrm{VDC}+40$ \% - 20 \%
Operating range:		
Upper limit value	$U_{B}(t)_{\text {max }}$	35 V
Lower limit value	$U_{B}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	< 50 VA
Current consumption	1	$<2 \mathrm{~A}$
Fuse	Is	2 A medium time-lag, exchangeable
Inputs, analog		
Command values 1 to 4 (potentiometer inputs)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$ (M0 is reference)
Command value 5 (differential input)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>50 \mathrm{k} \Omega$
Command value 6 (current input)	$I_{\text {e }}$	$4 \ldots 20 \mathrm{~mA}$, load $R_{\mathrm{B}}=100 \Omega$
External ramp time	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}=10 \mathrm{k} \Omega$ (internally increased to $+15 \mathrm{~V}, \mathrm{M} 0$ is reference)
Inputs, digital		
Command value call-ups,		
Command value inversion,		
Enable,	U	$8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow \mathrm{ON}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Ramp on/off,	\cup	$0 \ldots 6.5 \mathrm{~V}$-> OFF, $R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Ramp call-ups (option T5),		
Setting ranges		
Zero adjustment (potentiometer "Zw")		± 30 \%
Command values (potentiometers "w1" to "w4")		$0 . .110$ \%
Ramp times (potentiometer "t1" to "t5")		$20 \mathrm{~ms} \ldots 5 \mathrm{~s}$, switchable to $0.2 \ldots 50 \mathrm{~s}$
Step level (potentiometer "S+" and "S-")		0 ... 50 \%
Amplitude attenuator (potentiometer "G+" and "G-")		$0 \ldots 110 \%$ (applies to the step level setting of 0%)
Outputs		
Internal command value	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Actual current value	U	$\pm 2,5 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}(\mathrm{mV} \hat{=} \mathrm{mA})$
Measurement signal (option 5)	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Ready for operation	U	$>16 \mathrm{~V}, 50 \mathrm{~mA}$ (in case of a fault: $U<1 \mathrm{~V}, R_{\mathrm{i}}=10 \mathrm{k} \Omega$)
Regulated voltages	U	$\pm 10 \mathrm{~V} \pm 2 \%, 25 \mathrm{~mA}$, short-circuit-proof
Power output stage	1	0 ... 2.5 A, short-circuit-proof
Measuring sockets		
Command value "w"		$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Actual current value signal "I"		$\pm 2.5 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}(\mathrm{mV} \stackrel{\mathrm{mA}}{ } \mathrm{mA})$
Ramp time "t"		See description on page 3
Socket "v" (option T5)		See description on page 3 and table on page 10
Clock frequency		
WRA6...2X	f	$300 \ldots 370 \mathrm{~Hz}$ (at $U_{\mathrm{B}}=24 \mathrm{~V}$ and $U_{\text {command }}=0 \mathrm{~V}: 370 \mathrm{~Hz}$)
WRA10...2X	f	$180 \ldots 410 \mathrm{~Hz}$ (at $U_{\mathrm{B}}=24 \mathrm{~V}$ and $U_{\text {command }}=0 \mathrm{~V}: 410 \mathrm{~Hz}$)
WRZ...7X	f	170 Hz
3DREP 6...2X	f	170 Hz
Type of connection		48 pin male multipoint connector, DIN 41612, design F
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Admissible operating temperature range	ϑ	$0 \ldots 50{ }^{\circ} \mathrm{C}$
Storage temperature range	ง	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Weight	m	0.17 kg (net)

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30110-U.

Bosch Rexroth AG, RE 30110, edition: 2013-04

Characteristic curves

Display/adjustment elements, option T1

Ramp time	J3
$0.2 \ldots 50 \mathrm{sec}$.	\square
$0.02 \ldots 5 \mathrm{sec}$.	\bullet

LED displays:

(:) Ready for operation (green)

- Enable (yellow)
-1 External inverting
T Ramp on

Measuring sockets:

I, w, t Measurement signal

Clock frequency	J5	J6
4WRA 6...2X	00	0
4WRA 10...2X	0	0
Universal, 4WRZ...7X 3DREP 6...2X	\square	\square

Maximum current setting	J7
4WRZ $\ldots 7 \mathrm{X}$, 3DREP $6 \ldots 2 \mathrm{X}$	\bullet
4WRA $6 \ldots 2 \mathrm{X}$, 4WRA $10 \ldots 2 \mathrm{X}$	$\boxed{0}$

\bullet	$=$ Factory setting of the jumpers
\square	$=$ Jumper closed
$\square 0$	$=$ Jumper open

$\perp \quad$ Measurement zero

Potentiometers (some with LED display):

Zw Zero point calibration
w1 Command value 1
w2 Command value 2
w3 Command value 3
w4 Command value 4
t Ramp time

Adjustable on the board:

Gw+ Amplitude attenuator for positive command values
Gw- Amplitude attenuator for negative command values
S+ Step level for positive direction
S- Step level for negative direction
f Clock frequency output stage

The warranty expires if the sealed potentiometer is adjusted.

Display/adjustment elements, option T5

Ramp time	J3
$0.2 \ldots 50 \mathrm{sec}$.	\square
$20 \mathrm{~ms} \ldots 5 \mathrm{sec}$.	$\bullet \square$

Step level	J8	J9
4 WRA $6 \ldots 2 \mathrm{X}$, 4WRA $10 \ldots 2 \mathrm{X}$	$\boxed{00}$	00
4 WRZ $\ldots 7 \mathrm{X}$, 3DREP $6 \ldots 2 \mathrm{X}$	\bullet	\square

Step function	J4
Off	\square
On	$\bullet 0$

Inversion	J 1
Inverting	\square
Not inverting	\bullet

LED displays:

(:) Ready for operation (green)
E Enable (yellow)
-1 External inverting
4Q 4-quadrant operation
T Ramp on

Measuring sockets:

$\mathbf{I}, \mathbf{w}, \mathbf{v}$	Measurement signal (see page 6)
\perp	Measurement zero

Potentiometers (some with LED display):

Zw	Zero point calibration	Adjustable on the board:	
w1	Command value 1	Gw+	Amplitude attenuator for positive command values
w2	Command value 2	Gw-	Amplitude attenuator for negative command values
w3	Command value 3	S+	Step level for positive direction
w4	Command value 4	S-	Step level for negative direction
t1	Ramp time 1	f	Clock frequency output stage
t2	Ramp time 2	The warranty expires if the sealed potentiometer is adjusted.	
t3	Ramp time 3		
t4	Ramp time 4		
t5	Ramp time 5		

Display/adjustment elements, option T5 (continued)

Measuring socket " v "

Signal designation	Measuring point selector switch	Measurement signal "v"
Internal command value	0	$\pm 100 \% \stackrel{ }{ }+10 \mathrm{~V}$
Command value call-up 1	1	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 2	2	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 3	3	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 4	4	$\pm 100 \%$ ¢ $\pm 10 \mathrm{~V}$
Zero point offset "Zw"	5	$\pm 30 \%$ ¢ $\pm 3 \mathrm{~V}$
1 composite signal of the command values	6	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Ramp output signal	7	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Not connected	8	
Clock frequency	9	Rectangular signal $\pm 15 \mathrm{~V}$
Ramp time "t1"	A	10 mV ... $10 \mathrm{~V}^{1)}$
Ramp time "t2"	B	10 mV ... $10 \mathrm{~V}^{1)}$
Ramp time "t3"	C	$10 \mathrm{mV} . . .10 \mathrm{~V}^{1)}$
Ramp time "t4"	D	$10 \mathrm{mV} \ldots 10 \mathrm{~V}^{1)}$
Ramp time "t5"	E	$10 \mathrm{mV} \mathrm{..} .10 \mathrm{~V}^{1)}$
Current ramp time "t"	F	10 mV ... $10 \mathrm{~V}^{1)}$

1) The allocations of voltage and ramp time specified in the table on page 3 shall apply.

Dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- For more information, refer to document 30110-B.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.
It must be remembered that our products are subject to a natural process of wear and aging.

Electrical amplifiers

Type VT 2000

Component series 5X

Table of contents

Features
Ordering code
Functional description
Troubleshooting
Block circuit diagram / pin assignment
Technical data
Output characteristic curve
Indicator / adjustment elements
Unit dimensions
Engineering / maintenance notes / supplementary information

Ordering code

Functional description

The command value voltage can be applied to command value input 1 either directly or via an external command value potentiometer using the regulated +9 V voltage from the power supply unit [8].
The following is valid for this input: $+9 \mathrm{~V}=+100 \%{ }^{1)}$.
External command value feedforward

Note:

If an external command value potentiometer is used, the internal potentiometer "Gw" [3] must be set to maximum or the desired maximum pressure.

Internal command value feedforward

Differential input (input 2)

Command value input 2 is a differential input [1] (0 to +10 V). If the command value is fed forward by external electronics with another reference potential (e.g. from a PLC), this input must be used. When cutting the command value voltage in or out, take care that both signal cables are connected to or disconnected from the input.

Before being passed on, both command values are summated [2] and fed to a potentiometer [3] that is accessible at the front panel of the card and acts as attenuator for limiting the maximum command value.
The downstream ramp generator [4] generates a ramp-shaped output signal from a stepped input signal. The time constant of this signal can be adjusted separately for up and down ramps by means of two potentiometers. The specified ramp time refers to a command value step-change of 100% and can be approx. 1 s or 5 s , depending on the jumper setting. If a command value step-change of less than 100% is applied to the input of the ramp generator or when the attenuator [3] is active, the ramp time shortens accordingly.
With the help of the external contacts "ramp up/down" the up and down ramp times can be set separately to their minimum value (approx. 30 ms).

Ramp "up/down" OFF

The output signal of the ramp generator [4] is the internal current command value and is fed to measuring socket " w " at the front panel of the card. Here, a command value of 100% corresponds to a voltage of +6 V . In addition, the command value is passed on via the current regulator [5] to the current output stage [6]. The current regulator [5] adds the value of potentiometer "Zw" (R130) for the biasing current to the value from the ramp generator. The current command value is modulated with the clock pulse encoder signal [7]. The clocked actual current value acts like a constant current with superimposed dither signal in the solenoid of the valve. The actual current value through the solenoid can be measured at socket "I". Here, a voltage of 800 mV corresponds to a current of 800 mA .
${ }^{1)}$ Reference potential for command value 1 is MO (measurement zero).
[] ... Cross-reference to block circuit diagram on page 3

Troubleshooting

If the VT 2000 amplifier card is not operable, follow the steps below for troubleshooting:

1. Is the operating voltage applied?

Measure contacts 24ac against 18ac
2. Is the fuse on the card defective?
3. Is the internal operating voltage of $\pm 9 \mathrm{~V}$ available on the card?
4. If the internal command value potentiometer is used, is the jumper from 10ac to 12ac plugged?
5. Is the external potentiometer correctly connected?
(for the connection, see top left)
6. Is the differential input properly connected?

Check: Reference potential at 30ac

$$
0 \text { to }+10 \mathrm{~V} \text { at } 28 \mathrm{c}
$$

7. Is the solenoid properly connected?

When the card is unplugged, a resistance of approx. 20 to
30Ω must be measurable between contacts 22ac and 20ac.
8. The internal command value potentiometer "Gw" must not be turned to the left-hand limit stop ("zero").

Note:

In the case of excessive temperatures (e.g. caused by overloading), the output stage shuts down. This fault is not signalled separately!
Measurement zero (MO) is raised by 9 V as against OV operating voltage!

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC + $40 \%-5 \%$
Operating range:		
- Upper limit value	$u_{0}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	22 V
Power consumption	$P_{\text {S }}$	$<25 \mathrm{VA}$
Current consumption	1	$<1 \mathrm{~A}$
Fuse	$I_{\text {F }}$	2.5 A T
Inputs:		
- Command value 1	U_{i}	0 to +9 V (reference potential is M0)
- Command value 2 (differential input)	U_{i}	0 to $+10 \mathrm{~V} ; \mathrm{R}_{\mathrm{i}}=100 \mathrm{k} \Omega$
Ramp time (adjustment range)	t	30 ms to approx. 1 s or 5 s (depending on setting of S1)
Outputs:		
- Output stage		
- Solenoid current / resistance	$I_{\text {max }}$	$800 \mathrm{~mA}{ }^{1)}+10 \%-5 \% ; \mathrm{R}_{(20)}=19.5 \Omega$
- Biasing current	I_{v}	0 mA to 300 mA ; adjustable using potentiometer " Zw (R130)" on the printed circuit board
- Clock frequency	t	100 Hz or $200 \mathrm{~Hz} ; \pm 10 \%$ each; depending on the setting with jumper S2 ("frequency")
- Regulated voltage	U	$\pm 9 \mathrm{~V} \pm 1 \% ; \pm 25 \mathrm{~mA}$ externally loadable
- Measuring sockets		
- Command value "w"	U	0 to $+6 \mathrm{~V}(+6 \mathrm{~V} \triangleq 100 \%) ; \mathrm{R}_{\mathrm{i}}=1 \mathrm{k} \Omega$
- Actual current value "I"	\cup	0 to $800 \mathrm{mV} \xlongequal{\wedge} 0$ to $800 \mathrm{~mA} \pm 10 \mathrm{~mA}$
Type of connection		32-pin male connector, DIN 41 612, form D
Card dimensions		Euro-card 100×160 mm, DIN 41494
Front panel dimensions:		
- Height		$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width soldering side		1 TE (5.08 mm)
- Width component side		3 TE
Permissible operating temperature range	$ง$	0 to $50{ }^{\circ} \mathrm{C}$
Storage temperature range	\checkmark	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0.1 kg

${ }^{1)}$ The maximum current $I_{\text {max }}$ can be adjusted to the required value using the command value attenuator (potentiometer " $G w$ " on the front panel).

Note:

For details regarding environment simulation testing in the fields of EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30111-U (declaration on environmental compatibility).

Indicator / adjustment elements

Meaning of the jumpers on the card for the settings

(nameplate on the printed circuit board)

Note:

The circles (\bigcirc) serve for marking the settings made by the customer.
The factory setting is identified with "•".

Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

- Before commissioning the amplifier, make sure that the jumpers on the printed circuit board are plugged according to the relevant application.
- With the factory setting, an amplifier of series 5 X is interchangeable with series 4 X with a ramp time of 5 s and a clock frequency of 200 Hz .
If a series 5 X amplifier is to be used as substitute for a device of series 4 X , a blind plate having a width of 4 TE must be ordered separately (see ordering code on page 1).
- The amplifier may only be installed when disconnected from the power supply!
- Do not use plug-in connectors with free-wheeling diodes or LED lamps for connecting the solenoids!
- Measurements on the card may only be taken using instruments with $\mathrm{R}_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- The measurement zero (MO) is raised by +9 V as against the OV operating voltage and is not electrically isolated, i.e. -9 V regulated voltage $\xlongequal{\wedge} \mathrm{V}$ operating voltage.

The measurement zero (M 0) must therefore not be connected to the OV operating voltage!

- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Always shield command value cables; connect the shield to ground on the card side and leave the other end open. The card must be connected to ground at connection 6 or 8 . If no system ground is available, connect $0 V$ operating voltage.
Recommendation: Also shield solenoid cables!
For solenoid cable lengths up to 50 m , use cable type LiYCY $1.5 \mathrm{~mm}^{2}$.
For greater lengths, please consult us!
- The distance to aerial lines, radio sources and radar equipment must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Because of the charging current of the smoothing capacitors on the card, back-up fuses must be of the slow-blowing type!
- Caution: When using the differential input, both inputs must always be activated or deactivated simultaneously!

Note: Electrical signals (e.g. actual value) brought out via control electronics must not be used for switching safety-relevant machine functions!
(See also European standard "Safety requirements for fluid power systems and components - hydraulics", prEN 982)

Notes

Notes

Bosch Rexroth AG
Industrial Hydraulics
Zum Eisengiesser 1
97816 Lohr am Main, Germany
Telephone +49 (0) $9352 / 18-0$
Fax +49 (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Group

Electrical amplifiers

Type VT-VSPA1-1 and VT-VSPA1K-1

Component series 1X

Table of contents

Contents

Features

Ordering code
Functional description
Block circuit diagram / pin assignment VT-VSPA1-1
Block circuit diagram / pin assignment VT-VSPA1K-1
Technical data
Output characteristic curves
Indicator / adjustment elements
Meaning of DIL switches
Unit dimensions
Engineering / maintenance notes / supplementary information 11
Troubleshooting

Page
1

2 and 3

Features

- Suitable for controlling all direct and pilot operated proportional pressure control valves without electrical position feedback and only one solenoid as actuator that are available at the time of publication of this data sheet
- Differential input, can be switched between voltage and current input
- Additional command value input, 0 to +9 V
- Ramp generator, can be adjusted separately for up and down ramps
- Clocked output stage
- Signal "ready for operation" (VT-VSPA1K-1 only with LED indicator lamp)
- Reverse polarity protection for voltage supply
- Cable break detection of current input 4 to 20 mA
- Short-circuit protection of solenoid cable
- Cable break detection of solenoid cable

Ordering code

Suitable card holders for VT-VSPA1-1:

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply unit

Suitable power supply unit:

- Type VT-NE30-2X, see RE 29929

Compact power supply unit $115 / 230$ VAC $\rightarrow 24$ VDC, 108 W

For substitutes for amplifier types VT 2000 (up to component series 4X), VT 2010, VT 2013 or VT 2023 for rack installation, blind plate $4 \mathrm{TE} / 3 \mathrm{HE}$ must be ordered separately.

Material no. R900021004

Functional description

The command value voltage is applied to command value input 1 either directly or via an external command value potentiometer with the help of the regulated +9 V voltage from the power supply unit [14].
The following is valid for this input: $+9 \mathrm{~V} \triangleq+100 \%^{1)}$.

External command value feedforward

Note:

When an external command value potentiometer is used, internal potentiometer "Gw" [3] must be set to maximum or the required maximum pressure.

Internal command value feedforward

Differential input (input 2)

Additions to the pin designations in brackets are only valid for type VT-VSPA1-1.

Command value input 2 is a differential input [1] (0 to +10 V). With the help of DIL switches ${ }^{2)}$ it can be configured as current input (4 to 20 mA or 0 to +20 mA). If the command value is fed forward by external electronics with a different reference potential (e.g. by a PLC), this input must be used. When the command value voltage is applied or withdrawn, care must be taken that both signal cables are disconnected from or connected to the input.
Before being passed on, both command values are summated [2] and then fed to a potentiometer [3] that is accessible on the front panel and acts as attenuator and limits the maximum command value.
The downstream ramp generator [4] generates a rampshaped output signal from a stepped input signal. The time constant of this signal can be adjusted separately for "up" and "down" ramps with the help of two potentiometers. The specified ramp time refers to a command value step-change of 100% and can be approx. 1 s or 5 s , depending on the setting of a DIL switch ${ }^{2)}$. If a command value step-change of less than 100% is fed to the input of the ramp generator or when attenuator [3] is effective, the ramp time shortens accordingly

The following is valid for type VT-VSPA1-1: The up and down ramp times can be set separately to their minimum value (approx. 30 ms) with the help of the external contacts "ramp up/ down OFF".

The following is valid for type VT-VSPA1K-1: The up and down ramp times can be set collectively to their minimum value (approx. 30 ms) with the help of the external contact "ramp OFF".

Functional description (continued)

Ramp "up/down" OFF

VT-VSPA1-1

Ramp "up" OFF
Ramp "down" OFF

VT-VSPA1K-1

Ramp OFF

The output signal of ramp generator [4] is fed as current command value to the summing amplifier [5]. Here, a command value of 100% corresponds to a voltage of +6 V .

Summing amplifier [5] adds the output signals of the characteristic curve generators [6 or 7] to the command value (can be selected by means of DIL switches ${ }^{2)}$ depending on the valve to be controlled). The current command value can also be filtered through a low-pass filter that can be cut in. Current output stage [9] is controlled via current regulator [8]. In addition, the current regulator modulates the current command value with clock-pulse encoder signal [10] (the frequency can be programmed with the help of DIL switches ${ }^{2}$). The clocked actual current value acts in the solenoid of the valve like a constant current with overlaid dither signal. Type VT-VSPA1-1 is provided with measuring sockets for the internal command value and the actual value.
The following is valid for the command value: $+6 \mathrm{~V} \triangleq 100 \%$ The following is valid for the actual value: $1 \mathrm{mV} \triangleq 1 \mathrm{~mA}$ The signal "ready for operation" is output and LED "H2" on the front panel (with VSPA1-1) or LED "H2" (with VSPA1K-1) is lit, when:

- The solenoid cables are not short-circuited and the output stage is not overloaded,
- a command value is applied (cable break detection),
- there is no cable break present on the solenoid cable.
${ }^{1)}$ Reference potential for command value 1 is M0 (measuring zero).

2) For DIL switch settings, see page 8 to 10
[] ... Cross-reference to block circuit diagrams on pages 4 and 5

Block circuit diagram / pin assignment: VT-VSPA1K-1

Technical data (for applications outside these parameters, please consult us!)

[^10]
Output characteristic curves

Linear output characteristic curve (basic characteristic curve)

> I1 Adjustment range of biasing current I_{b} by means of potentiometer "Zw" (R130) on the printed-circuit board
> 12 Adjustment range of maximum command value by means of potentiometer "Gw"
> A Characteristic curve with factory setting

Output characteristic curve with firmly set characteristics

(see adjustment instructions on pages 9 and 10)

I_{v} Biasing current curve 2 (qualitative representation)
12 Adjustment range of maximum command value by means of potentiometer "Gw"
1 Characteristic curve 1 (qualitative representation)
2 Characteristic curve 2 (qualitative representation)

Indicator / adjustment elements

VT-VSPA1-1, from component series 11

LED indicator lamp "ready for operation"
Max. command value (attenuator)

Ramp time "up"

Ramp time "down"
w - Current command value
I - Actual current value

VT-VSPA1K-1

Indicator / adjustment elements (continued)
Assignment of DIL switch settings on the card to the valve types (see also label on the printed-circuit board)

Setting for valve types:	$\begin{gathered} \hline \mathrm{S} 15 \ldots \mathrm{~S} 17 \\ \text { (BR15 ... BR17) } \end{gathered}$	$\begin{gathered} \hline \text { S21 ... S27 } \\ \text { (BR21 ... BR27) } \end{gathered}$	Setting valid for all valve types:	$\begin{gathered} \hline \mathrm{S} 11 \ldots \mathrm{~S} 14 \\ \text { (BR11 ... BR14) } \end{gathered}$
DBE(M)T, DBE(M)30, DRE(M) 30 , 3 DRE(M) $10^{1)}$, 3DRE(M) $16^{1)}$, DBEP6A, DBEP6B, 3DREP6A, 3DREP6B, pumps			Ramp time Fs^{s}	
$\begin{aligned} & \text { DRE(M)10-5X, } \\ & \text { DRE(M)20-5X } \end{aligned}$			Command value $2+10 \mathrm{~V}$	
DBE(M)10-5X, DBE(M)20-5X, 3DRE(M)10P-6X, 3DRE(M)16P-6X, ZDRE10, (Z)DBE6			$0 \ldots 20 \mathrm{~mA}$	
DRE6, ZDRE6			$4 \ldots 20 \mathrm{~mA}$	

${ }^{1)}$ Up to component series $5 X$

Meaning of potentiometers "Zw" (R130) and "Gw":

- Adjustment of biasing current by means of potentiometer "Zw" (R130)
- Turning clockwise \rightarrow increase in biasing current
- Turning counter-clockwise \rightarrow reduction of biasing current
- Adjustment of the max. command value by means of potentiometer "Gw"
- Turning clockwise \rightarrow increase in command value
- Turning counter-clockwise \rightarrow reduction of command value

Note (X):
With type VT-VSPA1-1 (component series 10) switch BR22 must be set to "ON" and potentiometer "R130" turned to "lefthand limit stop" before the correct characteristic curve can be set.
With type VT-VSPA1-1 (from component series 11) and type VT-VSPA1K-1, the switches S21 and S22 are ineffective. Potentiometer " Zw " needs not to be operated.

Meaning of the DIL switches

Note (X):
Before commissioning the amplifiers, make sure that the DIL switches on the printed-circuit board are set according to the relevant application.
Switch positions with reference to the current valve types or previous amplifier cards

Switch	Valve types/amplifier cards			
	DBE(M)T, DBE(M)30 DRE(M)30, DRE(M) $10^{3)}$ DRE(M) $16^{3)}$ DBEP6A, DBEP6B 3DREP6A, 3DREP6B pumps	DRE(M)10-5X DRE(M)20-5X	DBE(M) 10-5X DBE(M)20-5X ZDRE10 (Z)DBE6 3DRE(M)10P-6X 3DRE(M)16P-6X	DRE, ZDRE6
	VT 2000	VT 2010	VT 2013	VT 2023
	Characteristic curves			
S15 (BR15) S16 (BR16)	Basic characteristic curve OFF OFF	Characteristic curve 1 ON OFF	Characteristic curve 1 ON OFF	Characteristic curve 2 OFF ON
S23 (BR23) S24 (BR24) S17 (BR17)	Command value filters			
	$\begin{aligned} & \text { OFF } \\ & \text { OFF } \end{aligned}$	$\begin{gathered} \mathrm{f}_{-3 \mathrm{~dB}}=4 \mathrm{~Hz} \\ \mathrm{ON} \\ \text { OFF } \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{f}_{-3 \mathrm{~dB}}=4 \mathrm{~Hz} \\ \text { ON } \\ \text { OFF } \end{gathered}$	$\begin{gathered} \mathrm{f}_{-3 \mathrm{~dB}}=2.5 \mathrm{~Hz} \\ \text { OFF } \\ \text { ON } \\ \hline \end{gathered}$
	Max. output current ${ }^{1)}$			
	$\begin{gathered} I_{\max }=800 \mathrm{~mA} \\ \mathrm{ON} \end{gathered}$	$\begin{gathered} I_{\max }=800 \mathrm{~mA} \\ \mathrm{ON} \end{gathered}$	$\begin{gathered} I_{\max }=1,6 \mathrm{~A} \\ \text { OFF } \end{gathered}$	$\begin{gathered} I_{\max }=1.6 \mathrm{~A} \\ \text { OFF } \end{gathered}$
S25 (BR25) S26 (BR26) S27(BR27)	Clock frequency ${ }^{2)}$			
	$\mathrm{f}=200 \mathrm{~Hz}$	$\mathrm{f}=200 \mathrm{~Hz}$	$\mathrm{f}=300 \mathrm{~Hz}$	$\mathrm{f}=370 \mathrm{~Hz}$
	OFF	OFF	OFF	OFF
	ON	ON	OFF	OFF
	ON	ON	ON	OFF
	Basic biasing current setting			
"Zw" (R130)	100 mA	50 mA	100 mA	100 mA

1) Doubling of the maximum output current doubles the adjustment range and the set biasing current.
2) For $f=100 \mathrm{~Hz}$, DIL switches $\mathrm{S} 25, \mathrm{~S} 26$ and S27 must be set to the "ON" position.
3) Up to component series 5 X

Adjustment range of biasing current using potentiometer "Zw" (R130):
$I_{\text {max }}=800 \mathrm{~mA} \rightarrow I_{\mathrm{b}}=0$ to 300 mA
$I_{\text {max }}=1600 \mathrm{~mA} \rightarrow I_{\mathrm{b}}=0$ to 600 mA
() valid for VT-VSPA1-1, component series 10
When switch BR22 is operated, the biasing current increases by 50 mA or 100 mA .

Adjustment options inedependent of the valve type (command value 2 and ramp time)

$\begin{aligned} & \text { S11 (BR11) } \\ & \text { S12 (BR12) } \\ & \text { S13 (BR13) } \end{aligned}$	Configuration of differential input			
	Command value 2: +10 V OFF OFF OFF	Command value 2: 0 to 20 mA ON ON OFF	Command value 2: 4 to 20 mA ON ON ON	DRE, ZDRE6
	Max. ramp time			
S14 (BR14)	$\mathrm{OFF} \triangleq 1 \mathrm{~s}$		$\mathrm{ON} \triangleq 5 \mathrm{~s}$	

[^11]

Engineering / maintenance notes / supplementary information

- Before commissioning the amplifiers, make sure that the DIL switches on the printed-circuit board are set according to the relevant application.
- The factory setting of the parameters is as follows (for the adjustment of parameters, see pages 8 to 10): \max. ramp time $=5 \mathrm{~s}$, biasing current $=100 \mathrm{~mA}$, max. output current $=800 \mathrm{~mA}$, clock frequency $=200 \mathrm{~Hz}$
- The amplifier card may only be installed when disconnected from the power supply!
- Do not use plugs with free-wheeling diodes or LED lamps for connecting the solenoids!
- Measurements on the card may only be taken with instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- Measuring zero $(\mathrm{M} 0)$ is raised by +9 V as against 0 V operating voltage and not electrically isolated, i.e. -9 V regulated voltage $\triangleq 0 \mathrm{~V}$ operating voltage. For this reason, do not connect measuring zero (M 0) to 0 V operating voltage!
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Always shield command value cables; connect the shield to ground on the card side and leave the other end open. Connect the card to ground at terminal 6 or 8 . If no system ground is provided, connect 0 V operating voltage.
Recommendation: Also shield solenoid cables!
For solenoid cables of up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$. For greater lengths, please consult us!
- The distance to aerial lines, radio sources and radar equipment must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Due to the charging current of the smoothing capacitor on the card, fuses must feature slow-blowing characteristics!
\triangle Caution! When the differential input is used, both inputs must always be switched on or off simultaneously!
Note! Electrical signals (e.g. signal "ready for operation") brought out via control electronics must not be used for switching safety-relevant machine functions!
(See also European standard "Safety requirements for fluid power systems and components hydraulics", EN 928.)

Troubleshooting

If the amplifier cards are not operable, follow the steps below for troubleshooting:

1. Is the operating voltage applied?

Measurement of contacts 24(ac) against 18 (ac)
2. Fuse on the card defective?
3. Internal $\pm 9 \mathrm{~V}$ operating voltage available on the card?
4. When the internal command value potentiometer is used, is the jumper from $10(\mathrm{ac})$ to $12(\mathrm{ac})$ plugged?
5. Is the external potentiometer properly connected?
6. Is the differential input properly connected?

Check: Reference potential to 30(ac)

$$
0 \text { to }+10 \mathrm{~V} \text { to } 28(\mathrm{ac})
$$

7. Is the solenoid properly connected?

When the card is unplugged, a resistance of approx. 20Ω to 30Ω or 5Ω to 8Ω, depending on the valve, must be measurable between contacts 22ac and 20ac.
The additions to the contact designations are only valid for type VT-VSPA1-1.

Note:

The output stage shuts down in the case of excessive temperatures (e.g. caused by overloading). This fault is signalled by LED "H2" going out!
In the event of a cable break of the " 4 to 20 mA " input, the signal "ready for operation" is reset and LED "H2" also goes out.
The following is valid from component series 11 onwards:
In the case of a short-circuit or cable break of the solenoid cable, the output "ready for operation" is switched and LED "H2" flashes at a frequency of 0.5 to 2 Hz as soon as the command value is $>2 \%$ at the same time.

Bosch Rexroth AG

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Digital valve amplifier for proportional valves without electrical position feedback

Type VT-VSPD-1

Component series 2 X

Table of contents

Content

Page
Features
1 and 2
Ordering code
Functional description
Block circuit diagram
Technical data
Pin assignment of multiple plug 6
Pin assignment of D-SUB socket 7
Unit dimensions
7
Engineering / maintenance notes / supplementary information 8

Features

- Suitable for controlling proportional valves without
electrical position feedback, types:
4WRA 6 and 10 , component series 2 X
4WRZ 10 to 52 , component series 5 X to 7 X
(Z)DBE 6 , component series 1 X
DBE(M)T, component series 5 X
DBE(M) 10 and 25 , component series 5 X
DBE(M) 32, component series 3 X
DBEP 6, component series 1 X
DRE 4 K, component series 3 X
DRE(M) 10 and 25 , component series 5 X
(Z)DRE 6 , component series 1 X
ZDRE 10 , component series $1 \mathrm{X}, 2 \mathrm{X}$
3DRE(M) 10 P and 16 P, component series $6 \mathrm{X}, 7 \mathrm{X}$
DRE(M) 32, component series 4 X
3DREP 6 , component series 1 X and 2 X
DBET 6, component series 6 X
Continued on page 2
electrical position feedback, types:
4WRA 6 and 10, component series 2 X
4WRZ 10 to 52 , component series 5 X to 7 X
(Z)DBE 6, component series 1X

DBE(M)T, component series 5 X
DBE(M) 10 and 25 , component series 5 X
DBE(M) 32, component series 3X
DBEP 6, component series 1X
DRE 4 K, component series 3 X
DRE(M) 10 and 25 , component series 5 X
(Z)DRE 6, component series 1X

ZDRE 10, component series 1X, 2X
3DRE(M) 10 P and 16 P , component series 6X, 7X
DRE(M) 32, component series 4 X
3DREP 6, component series 1 X and 2 X

Continued on page 2

Features (continued)

- User-specific data can be exactly reproduced and are protected against unintended or unauthorized changing
- Use of a powerful microcontroller
- Valve selection by means of BODAC operator software
- Command value input, optionally as voltage or current interface
- Voltage input as differential input
- For optional applications, free programmability of output stage frequency, biasing, surge and final current, or characteristic curve correction with a maximum of 8 supporting points
- Command value input with variable input adjustment
- Ramp generator
- Digital inputs for calling up pre-set command value parameters
- Enable input and fault output
- Switched-mode power supply unit for internal supply voltages
- Freely configurable measuring socket X2
- Display (optional) for diagnostics purposes and complete configuration and parameterization
- Configuration and parameterization via serial interface with PC software BODAC (CD:SYS-HACD-BODAC-01)
- Up to 32 amplifiers can be interconnected via local bus for parameterization and diagnostics

Ordering code

(20 to 29: unchanged technical data and pin assignment)

Standard types	Material number
VT-VSPD-1-2X/V0/0-0-1	R901077297
VT-VSPD-1-2X/V0/1-0-1	R901161533

Required accessories:

- PC program BODAC: Ordering code for CD: SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/hacd
- Interface cable: Cable set VT-HACD-1X/03.0/ HACD-PC (R900776897) or commercial 1:1 cable

Suitable card holders:

- 19" racks VT 19101, VT 19102, VT 19103 and VT 19110, see RE 29768
- Enclosed card holder VT 12302, (standard), Mat. no. R900784153, see RE 30103
- Open card holder

VT 3002-2X/48F, Mat. no. R900020154) or VT 3002-2X/64G, Mat. no. R900991843), see RE 29928 Only for installation in control cabinet!

- Connection adapter VT 10812-2X/64G,

Mat. no. R900713826, see RE 30105

Functional description

The amplifier card is designed as double-sided printed-circuit board of Euro-card format $100 \times 160 \mathrm{~mm}$ with daughter board.
The central unit of the amplifier is a microcontroller that controls the entire sequence. Data for configuration, command values, and parameters are saved in a non-volatile FLASH.
Four binary-coded, digital inputs can be used for calling up parameter sets (command values) from the memory, in which a maximum of 16 sets can be saved. A call-up activates the command value for the valve spool position with the associated ramp times.
Further control inputs assume the following functions:
"Comm. valid": Enable of the parameter set addressed by the current call-up (H-active)
"Enable": Activation of outputs (acknowledgement of fault message with Low \rightarrow High edge)
The command value can be provided in the form of digital command value call-ups [5] and/or via analog inputs [1]. Analog input Al4 (b14/b16) must be used for command values of $\pm 10 \mathrm{~V}$, analog input Al6 (b22/b24) for command values of 4 to 20 mA . Command values of 0 to $+10 \mathrm{~V}(12 \ldots 20 \mathrm{~mA})$ control solenoid " B ".
Command values of 0 to $-10 \mathrm{~V}(4 \ldots 12 \mathrm{~mA})$ control solenoid " A ".
The digital command value is added to the analog command value with the correct sign in accordance with the set call-up.
The signal level of the command value inputs can be varied by means of the software.
Apart from the possibility of generating ramps internally, the ramps for "up" and "down" can be influenced by external signals with the correct amount and sign with the help of analog inputs Al2 (b6/b8) and Al5 (b18/b20).
When a spool with overlap is selected for valves, a step function generator [8] can be configured by means of the software to implement an overlap jump.

Enable and fault messages

Closed-loop controlling is activated by an H -level at the enable input. If no command value call-up is active, digital call-up "0" is set.
A fault logic [13] recognizes a cable break of the command value input for 4 to 20 mA and an inactive enable input. When a fault is present, a fault message is output by means of a "low" signal at (d22) and the fault signaled visually by the LED "OK" (OK goes out) on the front panel. It is possible to configure the enable so that an inactive enable input is not signaled as a fault.

Parameterization and diagnosis

The selection of the valve to be controlled and the selection and configuration of the command value input, the ramp generator and the enable input, and the setting of parameters of the command value call-ups meter are made via the serial interface at the D-SUB sockets at the front. Up to 32 valve amplifiers can be interconnected via the local bus. Each valve amplifier is assigned a bus address via BODAC. Re-plugging of the serial interface cable is not required. For further information, please see RE 30523-01-B.
On the version with display, configuration, parameterization, and diagnostics can be carried out directly on the display without a PC.

Digital outputs
DO 1 (d20)
DO 2 (d26)
Solenoid A active

DO 3 (z22)
DO 4 (z24)
DO 5 (z26)
DO 6 (z28)
DO 7 (f2)
Solenoid B active
Freely configurable
Freely configurable
Freely configurable
Freely configurable
Not assigned

Indicator elements and measuring sockets

The front panel of the command value card is fitted with measuring sockets for the two analog outputs:
Measuring socket " X 1 ": Valve current
Measuring socket "X2": Valve command value (default)
Measuring socket " \perp ": Reference potential (corresponds to connection z32)

The following states are signaled by LEDs:
LED "®" (green): Enable active
LED "OK" (green): OK ready for operation
LEDs "I1"..." 14 " (yellow): Binary-coded command value call-
ups
LED "16" (yellow) Command valid
LED " 15,17 " (yellow) Not assigned
Display functions:
Display, 4 characters
Configuration, parameterization and diagnosis in conjunction with the keys above
[] = Cross-reference to block circuit diagram on page 4
\qquad
\qquad

n-

カ,

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC + $40 \%-10 \%$
Operating range:		
Upper limit value	$\mathrm{u}_{\mathrm{B}}(\mathrm{t})_{\text {max }}$	35 V
Lower limit value	$u_{B}(t)_{\text {min }}$	21 V
Current consumption	$I_{\text {max }}$	1.5 A; stand-by current 270 mA
Fuse	1 s	4 A slow-blowing
Digital inputs	Signal	$\begin{array}{\|l\|} \hline \log 0=0 \text { to } 5 \mathrm{~V} \\ \log 1=16 \mathrm{~V} \text { to } U_{B} \\ \hline \end{array}$
Digital outputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=U_{B}-3 \mathrm{~V} \\ & I_{\max }=30 \mathrm{~mA} \text {, short-circuit-proof } \end{aligned}$
Analog inputs ${ }^{\text {max }}$ (${ }^{\text {max }}$		
Voltage inputs Al4, Al2 and AI5		
Range	U	$\pm 10 \mathrm{~V}$
Input resistance	$R_{\text {e }}$	$100 \mathrm{k} \Omega,>10 \mathrm{M} \Omega$ for input Al2
Resolution		5 mV for range $\pm 10 \mathrm{~V}$ 2.5 mV for range $0 . . .10 \mathrm{~V}$
Non-linearity		< 10 mV
Current inputs Al6, Al2 and Al5		
Range	/	4... 20 mA
Input resistance	$R_{\text {e }}$	100Ω
Current loss		0.15 \% (at 500Ω between Pin b24, b8, b20 and 0 V)
Resolution	1	$5 \mu \mathrm{~A}$
Analog outputs		
Voltage outputs AO 1 and AO 3		
Output voltage	U	$\pm 10 \mathrm{~V}$
Load	$R_{\text {Lmin }}$	$1 \mathrm{k} \Omega$
Resolution	U	1,25 mV (14 bit)
Residual ripple content		$\pm 15 \mathrm{mV}$ (without noise)
Ramp time	s	max. 300
Valve output stage		
Solenoid current per solenoid	$I_{\text {max }}$	2.5 A
Reference voltage	u	$\pm 10 \mathrm{~V}, 30 \mathrm{~mA}$, short-circuit-proof
Residual ripple content		$<20 \mathrm{mV}$
Sample time for command value conditioning	t	2 ms
Serial interface		RS 232 (front panel), D-Sub socket
Type of connection		64-pin connector strip, DIN 41612, form G
Local bus, distance to the most distant station	1	max. 280 m cable length
Card dimensions		Euro-card 100×160 mm, DIN 41494
Front panel dimensions:		
Height		$3 \mathrm{HE}(128.4 \mathrm{~mm})$
Width soldering side		1 TE (5.08 mm)
Width component side		7 TE
Permissible operating temperature range	ϑ	0 to $50{ }^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-20 to $+70^{\circ} \mathrm{C}$
Weight	m	0.2 kg

Note:

For details regarding environment simulation testing in the fields of EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30523-U (declaration on environmental compatibility).

Pin assignment of multiple plug

Row d		
Pin	Short desig- nation	Description
2	DI 1	Binary 1
4	DI 2	Binary 2
6	DI 3	Binary 4
8	DI 4	Binary 8
10	DI 5	n. c.
12	DI 6	Command valid
14	DI 7	n. c.
16	DI 8	n. c.
18	DI 9	Enable
20	DO 1	Solenoid A active
22	OK	OK output
24	Data+	Local bus
26	DO 2	Solenoid B active
28	Data-	Local bus
30	AO 1	Valve command value
32	n. c.	n. c.

Row b		
Pin	Short desig- nation	Description
2	n. c.	n. c.
4	n. c.	n. c.
6	Al 2+	Ramp + (U/I) +
8	Al 2-	Ramp + (U/I) -
10	n. c.	n. c.
12	n. c.	n. c.
14	Al 4+	Command value (U) +
16	Al 4-	Command value (U) -
18	Al 5+	Ramp - (U/I) +
20	Al 5-	Ramp - (U/I) -
22	Al 6+	Command value (I) +
24	Al 6-	Command value (I) -
26	AO 3	Valve current $\pm 10 \mathrm{~V}$
28	AGND	Analog GND
30	REF-	-10 V
32	REF+	+10 V

Row z		
Pin	Short desig- nation	Description
2	MA+	Solenoid A+ ${ }^{1)}$
4	MA-	Solenoid A- ${ }^{1)}$
6	MB+	Solenoid B+
8	MB-	Solenoid B-
10	Shield	Shield
12	n. c.	n. c.
14	n. c.	n. c.
16	n. c.	n. c.
18	n. c.	n. c.
20	System ground	System ground
22	DO 3	Freely configurable
24	DO 4	Freely configurable
26	DO 5	Freely configurable
28	DO 6	Freely configurable
30	UB	Supply voltage
32	LO	Ground

Row f		
Pin	Short desig- nation	Description
2	DO 7	n. c.
4	n. c.	n. c.
6	n. c.	n. c.
8	n. c.	n. c.
10	n. c.	n. c.
12	n. c.	n. c.
14	n. c.	n. c.
16	n. c.	n. c.
18	n. c.	n. c.
20	n. c.	n. c.
22	n. c.	n. c.
24	n. c.	n. c.
26	n. c.	n. c.
28	n. c.	n. c.
30	n. c.	n. c.
32	n. c.	n. c.

${ }^{1)}$ Connection for valve with one solenoid

Pin assignment of D-SUB socket

RS 232

Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

Product documentation for valve amplifier VT-VSPD-1-2X/

RE 30523

Technical data sheet (the present document)
RE 30523-B
Installation and operating instructions
RE 30523-01-B
Commissioning and operating instructions
RE 30523-U
Declaration on environmental compatibility
RE 30523-Z
Supplementary information on the replacement of VT-VSPD-1-1X by VT-VSPD-1-2X

- The amplifier card may only be plugged in or withdrawn when disconnected from the power supply!
- Do not use connectors with free-wheeling diodes or LED lamps for connecting the solenoids!
- Measurements on the cards may only be taken using instruments with $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Command value cables must always be shielded; connect the shield to connection z10 on the card side and leave the other end open (risk of earth loops)!
- For solenoid cables of a length up to 50 m , use cable type LiYCY $1.5 \mathrm{~mm}^{2}$. In the case of greater lengths, please consult us! Also shield solenoid cables!
- Use a highly flexible Cu conductor ($\mathrm{min} .2 .5 \mathrm{~mm}^{2}$) for connecting the system ground! The system ground is an integral part of EMC protection of the amplifier card. It is used to discharge interference that is transported via the data and supply cables. This is only possible when the system ground itself does not inject in interference into the command value card.
- The distance to aerial lines, radio equipment and radar systems must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Due to the charging current of smoothing capacitors on the card, back-up fuses must be of the slow-blowing type!
- Attention: When using the differential input, both inputs must always be switched on or off simultaneously!

Note: Electrical signals brought out via control electronics (e.g. signal "OK") must not be used for activating safety-relevant machine functions! (See also European standard "Safety requirements for fluid power systems and components - Hydraulics", EN 982)
Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
Fax $\quad+49$ (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de

C This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifier for proportional pressure valves

Type VT-MRMA1-1

RE 30214

Edition: 2013-04
Replaces: 06.05

Features

- Snap-in module housing with detachable plug-in screw connectors
- Configurable actual pressure value input
- Ramp times (up and down) can be separately adjusted
- Linearization
- Electronic limit stops for the actuator
- Position controller with "position command value reached" detection
- Enable input
- "Ready for operation" output
- "Position command value reached" output
- Configurable actual pressure value input
- Integrated pressure switch function with adjustable switching thresholds
- Switchable measuring socket
- Fault recognition (cable breaks, short-circuits etc.)
- LED indicators:
- Ready for operation (green)
- Enable (yellow)
- Error detection of actual pressure value input (red)
- Component series 1X
- Analog, modular design
- Suitable for controlling a direct current motor-operated pressure reducing valve with electric position feedback of the type (Z)DRS, size 6 , component series $1 X$

Contents

Features 1
Ordering code 2
Functional description 2
Block diagram/pin assignment 5
Technical data 6
Terminal assignment 7
Dimensions 7
Project planning/maintenance instructions/ additional information 8
Setting recommendation 9

Ordering code

01		02		03		04		05		
VT-MRMA1	-	1	-	1X	/	V0	/	0	/	

01	Analog amplifier in modular design	VT-MRMA1
02	For direct current motor-operated pressure reducing valve (Z) DRS, size 6, component series 1X	$\mathbf{1}$
03	Component series 10 to 19 (10 to 19: unchanged technical data and pin assignment)	$\mathbf{1 X}$
04	Version: Standard	V0
05	Standard option	$\mathbf{0}$
06	Further information in the plain text	*

Suitable pressure transducer:

- HM20-1X/..-C-K35
(see data sheet 30270)

Functional description

General

The amplifier module is snapped onto top hat rails according to EN 60715. It is electrically connected via 4 plug-in screw connectors with 4 ports each. The module is operated with 24 V direct voltage.

Power supply unit [1]

An internal power supply unit supplies all internally required positive and negative supply voltages.

Pressure command value provision [2]

The internal pressure command value signal is generated from the external pressure command value signal available at input [2] and the zero point offset [2] (Zw zero point potentiometer on the front side). If the pressure command value increases/decreases, the pressure rises/falls. The differential input can be configured into a 4 to 20 mA current input via DIL switches S1.1 to S1.6 (see commissioning instructions).

Standard values	Current input	Differential input	Pressure command value at measuring socket v (position 0)
0%	4 mA	0 V	0 V
100%	20 mA	10 V	10 V

A cable break in a pressure command value line will be detected ("ready for operation" output) and deactivate the output stage.

Ramp generator [3]

In the ramp generator [3], a provided step signal is turned into a ramp-shaped output signal. The ramp time relates to a pressure command value modification of the input signal of 100%. The ramp time is not extended or shortened by the downstream pressure command value attenuator [4].

The ramp times for pressure increase or pressure reduction can be adjusted separately on the front side of the module using potentiometers " t <" and " t >". The current ramp time values can also be checked or pre-set via the switchable measuring socket (also located on the front side).
Information on ramp time adjustment:

Value at measuring socket (position 4 or 5) U_{t} in V	10	5	3	2	1	0.5	0.1	0.05	0.03	0.02	0.01
Current ramp time t in s ($\pm 20 \%)$	0.1	0.2	0.33	0.5	1	2	10	20	33.3	50	100

The following applies: Example measured:

$$
t=\frac{1 \mathrm{Vs}}{U_{\mathrm{t}}} \text { Measurement: } U_{\mathrm{t}}=5 \mathrm{~V} \Rightarrow t=\frac{1 \mathrm{Vs}}{5 \mathrm{~V}}=0.2 \mathrm{~s}
$$

Gw pressure command value attenuator [4]

The Gw potentiometer acts as an attenuator [4] and determines the maximum internal pressure command value. The setting range lies between 0% and 130%.

Linearization of the valve characteristic curve [5]

The linearization [5] is used to compensate the non-linear valve characteristic curve. The required valve position command value is generated from the pressure command value.

Amplitude limiter [6]

The amplitude limiter [6] limits the internal valve position command value to $+110 \%$ and -5%.

Actual valve position value acquisition [12]

A voltage output is used to supply the position transducer. The actual valve position value fed back by the position transducer can be corrected using the Zx zero point potentiometer and the Gx sensitivity potentiometer. The internal

Functional description (continued)

actual position value signal generated this way is provided to the valve position controller [7] for further processing. Cable breaks in the position transducer lines are detected via the fault recognition [8].

Electronic limit stop

The electronic limit stops are a functional part of the actual value position acquisition [12].
The adjustable stroke of the valve is mechanically limited. The used working range is within these mechanical stops. To prevent the valve from moving into the mechanical stops when this is not intended (e.g. during setting), so-called "electronic stops" which are within these limits have been realized for safety purposes. The valves are prevented from moving beyond these limits by deactivation of the output stage. The electronic stops are only effective if sensor and motor are correctly wired.

Valve position controller [7]

The valve position controller [7] generates the control output for the clocked output stage on the basis of the position control deviation. The position controller has been optimized for a special valve type.

Output stage [10]

The output stage [10] generates the clocked control voltage for the DC motor acting as actuating element in the pressure reducing valve. The output stage output is short-circuit-proof. The output stage is de-energized in case of an internal fault signal [8] or if not enabled [11].
"Position command value reached" detection [9]
A "position command value reached" output is provided for as auxiliary process variable. This output is connected with 24 V operating voltage when the control deviation from the valve position command value and the regulated actual valve position value are $\leq 5 \%$ of the nominal stroke and the internal ramp output signal corresponds to the provided pressure command value.

Fault detection [8]

The following is monitored:

- Cable break of pressure command value lines
- Inversion of the pressure command value lines
- Cable break of the position transducer connecting lines
- Short-circuit of the position transducer supply at LO (0 V)
- Thanks to the integrated motor protection the following is detected:
- Inversion of the motor lines (positive feedback)
- Jammed valve actuator
- Cable break of the motor lines

If there is no error, the green "ready for operation" LED on the front side is lit and the "ready for operation" output is connected to 24 V operating voltage.

Motor protection

The motor protection is a functional part of the fault recognition [8]. To ensure the correct functioning of the valve actuator, the adjustment time required for each pressure adjustment process is monitored. If an internally set maximum adjustment time (approx. 4 s) is exceeded, the output stage is deactived to prevent the motor from being damaged by continuous application of current.
The "ready for operation" output is connected to 0 V and the green LED on the front side goes out. After the cause of error has been eliminated, the electronics can be reactivated by resetting and enabling it.
The motor protection detects the following:

- Inversion of the motor lines (positive feedback)
- Cable break of the motor lines
- Jammed valve actuator

Enable function [11]

The enable function [11] can be used to activate both the position controller and the output stage via the external control. The enable signal is indicated by a yellow LED © on the front side of the module.

Internal controller and output stage enable

The controller and the output stage are enabled if the external enable [11] has been set and the electronics is "ready for operation", i.e. the fault recognition [8] does not diagnose any error.

Actual pressure value input [13]

The internal actual pressure value signal is generated from the signal available at actual pressure value input [13] and the zero point offset (Zp zero point potentiometer on the front side). The Gp sensitivity potentiometer can be used to compensate tolerance-related variations of the pressure transducer. The input can be configured either as 0.5 to 5 V voltage input or 4 to 20 mA current input via the DIL switches S1.7 and S1.8 (see commissioning instructions) and a corresponding adjustment using the Zp zero point potentiometer and Gp sensitivity.
Notice: If the input is configured as 4 to 20 mA input and if the actual pressure value input is connected in series with another separate external current input, the module electronics supplies an offset current at terminal 1. This must be taken into account when adjusting the external current input.
The following is monitored at the actual pressure value

Functional description (continued)

input (depending on the property of the pressure transducer electronics):

- Cable break of the actual pressure value lines
- Inversion of the actual pressure value lines
- Cable break of the pressure transducer's operating voltage
- Cable break of the pressure transducer's ground If one of these errors is detected at the actual pressure value input, both pressure switch signals A and B are connected with 0 V and the red LED (!) on the front side of the amplifier module is lit.

Pressure switch function [14]

The integrated pressure switch [14] compares the internal actual pressure value to a window which can be individually adjusted by the pressure command value (DIL switches S2.1 to S2.9). Depending on whether the actual pressure value falls below the lower limit or exceeds the upper limit, the corresponding pressure switch signal A or B falls to 0 V . If the actual pressure value is within the pressure command value window, both pressure switch signals are connected to 24 V operating voltage. Exception: In case of a cable break of one of the two actual pressure value lines both signals A and B fall to 0 V . (Adjustment of the pressure switch thresholds via DIL switch S2, see commissioning instructions)

Measuring point switch-over [15]

The measuring sockets v and \perp on the module front side can be used to check various internal measuring points (v0 to v 5). The measuring points are selected via the measuring point selector switch [15] on the housing front panel.

Measuring point	Switch position	Measurement signal v $(\perp$ is reference $)$	
Pressure command value w_{P}	0	$0 \% \triangleq 0 \mathrm{~V}$ and $100 \% \triangleq 10 \mathrm{~V}$	
Actual pressure value $\quad \mathrm{x}_{\mathrm{P}}$	1	$0 \% \triangleq 0 \mathrm{~V}$ and $100 \% \triangleq 10 \mathrm{~V}$	
Valve command value $\quad \mathrm{w}_{\mathrm{S}}$	2	$0 \% \triangleq 0 \mathrm{~V}$ and $100 \% \triangleq 10 \mathrm{~V}$	
Actual valve value	x_{S}	3	$0 \% \triangleq 0 \mathrm{~V}$ and $100 \% \triangleq 10 \mathrm{~V}$
Ramp time "up"	$\mathrm{t}<$	4	10 mV to 10 V
Ramp time "down" $\quad \mathrm{t}>$	5	10 mV to 10 V	
Without function		6	0 V
Without function	7	$<-10 \mathrm{~V}$	
Without function	8	$<-10 \mathrm{~V}$	
Without function	9	$<-10 \mathrm{~V}$	

Notice:

Switch positions 6 to 9 have no function. They only serve to determine the switch position in case the arrow mark of the measuring point selector switch is no longer visible due to damage.
[] = references to the block diagram on page 5

Block diagram/pin assignment

1 Power supply unit
2 Pressure command value provision
3 Ramp generator
4 Pressure command value attenuator
5 Linearization of the valve characteristic curve
6 Amplitude limiter
7 Valve controller

9 Position command value reached - detection
10 Output stage
11 Enable function
12 Actual valve position value acquisition
13 Actual pressure value input
14 Pressure switch function
15 Measuring point switch-over

8 Fault recognition

VT-MRMA1-1 | Valve amplifier

Technical data (for applications outside these parameters, please consult us!)

[^12]
Terminal assignment

Actual pressure value input	$-\mathrm{x}_{\mathrm{p}}$	1	9	$\mathrm{x}_{\mathrm{s}}=\mathrm{w}_{\mathrm{s}}$	Position command value reached
	$+\mathrm{x}_{\mathrm{p}}$	2	10		Ready for operation
Position transducer supply	$\begin{aligned} & \text { - sensor } \\ & \text { Valve connector contact } 3 \end{aligned}$	3	11	0 V	Operating voltage
	$\begin{gathered} \text { + sensor } \\ \text { Valve connector contact } 1 \end{gathered}$	4	12	$+U_{B}$	
Pressure command value input	$-W_{P}$	5	13	A	Pressure switch signals
	$+W_{P}$	6	14	B	
Enable	Enable	7	15	-M Valve connector contact 5	Valve motor connection
Actual position value input	x_{s} Valve connector contact 2	8	16	+M Valve connector contact 4	

Dimensions (Dimensions in mm)

Potentiometers

Gw Pressure command value attenuator
Zw Zero point of pressure command value
Gp Amplification of actual pressure value
$\mathbf{Z p} \quad$ Zero point of actual pressure value
Gx Actual valve position value amplification
Zx Zero point of actual valve position value
\mathbf{t} < Ramp time "up"
t> Ramp time "down"

LED indicators

Ready for operation	(green)
(C) Enable	(yellow)
! Cable break in pressure load cell	(red)
Measuring sockets	
v Measurement signal	
\perp Load zero	

Project planning/maintenance instructions/additional information

- Prior to installation and commissioning it must be ensured that the DIL switches on the printed circuit board of the amplifier module have been correctly set (for function of the DIL switches, see commissioning instructions).
- DIL switches on the printed circuit board of the amplifier module may only be adjusted when de-energized.
- The amplifier module may only be wired or connected and opened when de-energized.
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- Do not lay motor and signal lines near power cables.
- The valve is connected with a 5 -wire line. For lines up to 50 m in length, use the line type LiYCY $0.5 \mathrm{~mm}^{2}$. For greater lengths, please contact us.
- If the valve line has to be shielded, the shield must be connected to protective earth ("PE") on the module side. In some cases (e.g. if PE is subject to strong interference) it can be useful to connect the shield directly to the L0 of the amplifier module, other side open (risk of ground loops).
- If a differential input is used, both inputs must always be connected or disconnected at the same time.
- Cable ends should not be too short, so as to ensure that the module can still be opened when connected (e.g.: to adjust the DIL switches).
- Ensure that the ground of the pressure command value (" $-w_{P}$ ", terminal 5), has the same potential (\rightarrow equipotential bonding busbar) as the ground ("LO", terminal 11) of the power supply unit. This allows for a better suppression of interferences.
- For setting the potentiometers and the measuring point selector switch, use a screwdriver with a blade width of 4 mm .

Setting recommendation

Condition as supplied

The condition as supplied of the electronics is characterized by the following features:

- Minimum ramp times.
- Gw attenuator is set to 100%.
- The linearity of the overall system (module electronics and valve) is subject to deviations in series production.

Fine adjustment of the overall system

Prerequisites:

- The system-specific wiring must have been completed.
- Set DIL switches on printed circuit board of module electronics according to individual requirements.
- Turn on the hydraulic system.

It must be ensured that the hydraulic fluid already has the (regulated) operating temperature for fine-adjustment.

	Signal	Setting
1	Pressure command value zero point	- Set external pressure command value provision to 0%. - Set measuring point selector switch to "0". - Use the zero point potentiometer $\mathbf{Z w}$ to adjust the measurement signal at $\mathbf{v}: 0 \mathrm{~V} \pm 5 \mathrm{mV}$ (= 0%).
2	Maximum pressure command value	Notice: Before adjusting the maximum value, the zero point must be adjusted according to step 1. - External pressure command value provision $=100 \%$. - Set measuring point selector switch to " 0 ". - Use the potentiometer Gw to adjust the measurement signal at \mathbf{v} : $10 \mathrm{~V} \pm 5 \mathrm{mV}$ ($=100 \%$).
3	Ramp times	- Use the measuring point selector switch to select the potentiometer that is to be set: - Position 4 for ramp "up" \mathbf{t} < and position 5 for ramp "down" \mathbf{t} >. - Set ramp time according to formula or table (see functional description "Ramp generator") and check at measuring socket \mathbf{v}.
4	20 \%- actual pres- sure value	Notice: Prior to the $\mathbf{2 0} \%$ actual pressure value adjustment the pressure command value must be adjusted according to steps 1 and 2. - Electrically connect the valve. - Measure sensor supply voltage on the module side between terminals 4 and 3: $+10.0 \mathrm{~V} \pm 300 \mathrm{mV}$ - Set external pressure command value provision to 20%. - Externally connect enable signal. - Set actual pressure value signal (= voltage between terminals 2 and 1) using $\mathbf{Z x}$ to 20% of the nominal pressure value: \rightarrow Actual pressure value signal dependent on the pressure transducer used: Set measuring point selector switch to "1". Use the potentiometer $\mathbf{Z p}$ to adjust the measurement signal at $\mathbf{v}:+2.00 \mathrm{~V} \pm 5 \mathrm{mV}$.

	Signal	Setting
5	Maximum actual pressure value	Notice: Before adjusting the maximum value, the $\mathbf{2 0} \%$ actual pressure value must be adjusted according to step 4. - Set external pressure command value provision to 100%. - Externally connect enable signal. - Set actual pressure value signal (= voltage between terminals 2 and 1) using Gxto 100% of the nominal pressure value: \rightarrow Actual pressure value signal dependent on the pressure transducer used: Set measuring point selector switch to "1". Use the potentiometer $\mathbf{G p}$ to adjust the measurement signal at $\mathbf{v}:+10.00 \mathrm{~V} \pm 5 \mathrm{mV}$.
6	Actual pressure value	Check both working points (steps 4 and 5). Repeat steps 4 and 5 if required.
7	Individually adjust the maximum pressure command value	Set external pressure command value provision according to individual requirements. Example: Reduce 100 \% external pressure command value to 80 \%. - Set external pressure command value provision to 100%. - Set measuring point selector switch to " 0 ". - Use the potentiometer $\mathbf{G w}$ to set the measurement signal at the measuring socket \mathbf{v} according to the requirements: adjustment according to example: $8.0 \mathrm{~V} \pm 5 \mathrm{mV}(=80 \%)$.

Bosch Rexroth AG

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de www.boschrexroth.de

[^13]Bosch Group

Analog amplifier module

Type VT-MRPA1-...

Series 1X

Table of contents

Contents

Features
Ordering details
Functional description
Block circuit diagram / connection allocation
Technical data
Terminal allocation
Unit dimensions
Engineering notes / maintenance guidelines /
additional information
Setting recommendations

[^14]
Features

- Suitable for controlling direct operated proportional relief valves with electrical position feedback (type DBETR-1X) or for proportional flow control valves with electrical position feedback (type 2FRE...)
- Command value input +10 V (differential input)
- Ramp generator with separately adjustable ramp times "up/down"
- Zero point potentiometer
- Amplitude attenuation
- Enable input
- Reverse polarity protection for the power supply
- Power supply with a DC/DC converter without a raised zero point
- Cable break recognition in the position transducer branch
- LED indicators:
- Operational (green)
- Enable (yellow)
- Measuring sockets for:
- Command value " w "
- Actual valve "x"
- Ramp times " t ", " t >"

Ordering details

Functional description

General

These amplifier modules can be snapped onto top hat rails to EN 60715. The electrical connections are are established by means of screw terminals. The modules are operated using 24 VDC.

Power supply unit [1]

The amplifier modules comprise a power supply unit with an inrush current limiter. It provides all the internally required positive and negative supply voltages. The inrush current limiter prevents high inrush current peaks.

Command value preselection

The internal command value signal is generated from the sum [3] of the external command value signal applied to differential input [2] and the zero point offset (zero point potentiometer "Zw").
A positive command value results in a current increase in the solenoid and, thereby an increase in pressure at the valve.

Enable function [11]

The enable function is used to enable the current output stages and to pass the internal command value signal on to the ramp generator. A LED on the front panel indicates the enable signal. When the enable is activated, the internal command value (an applied optional command value) changes according to the set ramp time. As a result of this, the valve does not open suddenly when activated.

Ramp generator [4]

The ramp generator limits the gradient of the control variable. Due to the amplitude attenuator, the ramp time is not extended or shortened.
Notes on the adjustment and measurement of the ramp time:

Value at measuring socket " \langle <" or " l >					>"		$\frac{5}{20}$		$\begin{array}{\|c\|} \hline 3 \\ \hline 33 \end{array}$	2
Actual ramp time (± 20 \%)					t in ms					
$U_{\text {t }}$ in V	1	0.5	0.3	0.2	0.1	0.05		0.03		0.02
t in ms	100	200	333	500	1000	2000		3333		5000

The following is valid:	$t=\frac{100 \mathrm{~V} \mathrm{~ms}}{U_{\mathrm{t}}}$	
Example:	Measured	$U_{\mathrm{t}}=5 \mathrm{~V}$
Results in	$t=\frac{100 \mathrm{~V} \mathrm{~ms}}{5 \mathrm{~V}}=20 \mathrm{~ms}$	

Amplitude attenuation [5]

The amplitude attenuator "Gw" can be used to adjust the maximum value, within the range of $0-100 \%$, to the hydraulic requirements.

Amplitude limiter [6]

The internal command value is limited to 0% and 110%.

Oscillator [9]

The oscillator generates the control signal for the inductive position transducer.

Demodulator [10]

The demodulator uses the position transducer signal to provide the actual value signal of the valve spool position: $+100 \% \xlongequal{\wedge}+10 \mathrm{~V}$ at measuring socket " x ".

Controller for the valve spool position [7]

The position controller is used to minimize the valve hysteresis and is optimised to meet the individual valve's requirements.

Current output stages [8]

The current output stage generates the clocked solenoid current for the proportional valve. The solenoid current is limited to approx. 1.85 A. The output stage outputs are short-circuitproof. The output stages are de-energized in the case of an internal fault signal or missing enable.

Fault detection [14]

The position transducer cable is monitored for cable break and short circuits and the output stage for overcurrent.
[] = Cross-reference to the block circuit diagram on page 3

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC +40 \% -20 \%
Operating range:		
- Upper limit value	$u_{B}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{B}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	< 24 VA
Current consumption	1	$<2 \mathrm{~A}$
Fuse		Thermal overload protection (with reclosing feature when the temperture falls below the threshold)
Inputs:		
- Command value (differential input " $\pm \mathrm{IN}$ ") - Digital	$U_{\text {e }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{e}}>50 \mathrm{k} \Omega$
- Enable ON	U	8.5 V to $U_{\mathrm{B}} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
OFF	\cup	0 to $6.5 \mathrm{~V} ; R_{\mathrm{e}}>100 \mathrm{k} \Omega$
Adjustment ranges:		
- Command value zero point (potentiometer "Zw")		± 10 \%
- Actual value zero point (potentiometer " $2 \times$ ")		± 10 \%
- Ramp times (potentiometer " l < " and " t >")		20 ms to 5 s
- Amplitude attenuator (potentiometer "Gw")		0% to 110% (valid for setting the zero point $=0 \%$)
Outputs:		
- Current output stages	1	0 to 1.85 A ; short-circuit-proof; clocked to approx. 5 kHz
- Oscillator	$U_{\text {SS }}$	2 V ; 10 mA per output
	f	$5.6 \mathrm{kHz} \pm 10$ \%
- Measuring sockets		
- Ramp time " l <"	U	20 mV to 5 V
- Ramp time " l >"	U	20 mV to 5 V
- Actual value "x"	U	0 to +10 V
- Command value "w"	U	0 to +10 V
Connection type		12 screw terminals
Mounting style		Top hat rail TH 35-7.5 to EN 60715
Protection type		IP 20 to EN 60529
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$40 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range	\bigcirc	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	$ง$	$-25^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Weight	m	0.14 kg

Note:

For details regarding environmental simulation tests covering EMC (electro-magnetic compatibility), climate and mechanical loading see data sheet 30221-U.

Terminal allocation

[^15]Unit dimensions (dimensions in mm)

LED-indicators:

() Operational (green)

- Enable (yellow)

Potentiometer:

Gw Amplitude attenuator for positive com. values
Gx Position transducer sensitivity (pre-set)
Zw Command value zero point
Zx Actual value zero point
t < Ramp time for increasing command values
t > Ramp time for decreasing command values

Measuring sockets:

t < Ramp time "up"
t > Ramp time "down"
x Actual value
w Command value
\perp Measuring zero

Engineering notes / maintenance guidelines / additional information

The amplifier module may only be wired when disconnected from the power supply.

- Do not lay cables in the vicinity of power cables.
- Do not use free-wheeling diodes in solenoid cables.
- The distance to antenna cables, radio devices and radar systems must be at least 1 meter.
- Always shield command value and position transducer cables; connect the shield to protective earth (PE) on the module side. In individual cases (e.g. PE subject to strong interference), it may be required to connect the shield of the position transducer cable directly to the LO of the amplifier module; leave the other end open (risk of earth loops).
Recommendation: Also shield solenoid cables.
For solenoid cables up to 50 m long, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$.
In case of longer lengths, please consult us.
- Do not connect terminal " $\stackrel{\perp}{=}$ " of the position transducer to "PE"
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents).
- Use only instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$ for taking measurements on the module.
- In the case of strongly fluctuating operating voltages, it may be required in individual cases to use an external smoothing capacitor with a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see data sheet 30750); sufficient for up to 3 amplifier modules
- Note: When replacing a VT 11025, VT 11033, VT 11034 the changed terminal allocation of position transducer connections has to be taken into account. Pins " 6 " and " 12 " are exchanged.

Setting recommendations

The system-specific circuits must be provided.

Signal	Setting MRPA1
Com. value zero point	- Apply the enable signal - Set the externally applied command value to zero - Set the internal command value to zero using the zero point potentiometer "Zw" and check at measuring socket "w"
Act. value zero point	- Set enable signal to "OFF" or disconnect the solenoid plug (the valve moves to its mechanical limit stop) When making any adjustments, pay attention to the polarity of the measuring instrument \rightarrow measuring sockets.
Ramp times	- Adjust the ramp time according to the formula or table (see functional description of the "ramp generator") and check this at measuring sockets " $\mathrm{t}>$ " and "t <"
Maximum values (amplitude "Gw") attenuator "Gw"	Note: Before the maximum values can be matched the zero point must be correctly set - Command value = apply 100%. - Use potentiometer "Gw" to set the maximum control variable and check at the measuring socket "w"

[^16]> (C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Group

Analogue amplifier modules for $4 / 3$ and $4 / 2$ proportional directional valves 4WRE

Types VT-MRPA2 and VT-MRPA1

Component series 1X

Features

- Suitable for controlling direct operated $4 / 3$ and $4 / 2$ proportional directional valves with electrical position feedback, type 4WRE, sizes 6 and 10, component series 2 X
- Command value input $\pm 10 \mathrm{~V}$ (VT-MRPA2), 0 to 10 V (VT-MRPA1)
- Ramp generator with separately adjustable "up/down" ramp times
- Characteristic curve correction with symmetrically (with VT-MRPA2 only) adjustable step-change heights and separately (with VT-MRPA2 only) adjustable maximum values
- Enable input
- Reverse polarity protection of power supply
- Power supply unit with DC/DC converter without raised zero point
- Cable break detection in the position transducer branch
- LED indicator lamps:
- Readiness for operation (green)
- Enable (yellow)

Ordering code

Suitable power supply unit:

- Type VT-NE30-2X, see RE 29929
compact power supply unit 115/230 VAC -> 24 VDC, 108 VA

Functional description

General

The amplifier modules are to be snapped onto top hat rails according to EN 60715. The electrical connection is made by means of screw terminals. The modules are operated at 24 V DC.

Power supply unit [1]

The amplifier modules are provided with a power supply unit with switch-on current limiter. The power supply unit provides all internally required positive and negative supply voltages. The switch-on current limiter prevents high switch-on current peaks.

Command value feedforward

The internal command value signal is generated from the sum [3] of the external command value signal applied to differential input [2] and the zero point offset (zero point potentiometer " Zw ").
The following is valid for VT-MRPA2:
A positive command value causes an increase in current in solenoid " b " and hence a flow in the valve from P to A and from B to T.
A negative command value causes an increase in current in solenoid "a" and hence a flow in the valve from P to B and from A to T .
The following is valid for VT-MRPA1:
A positive command value causes an increase in current in the solenoid.

Enable function [11]

The enable function is used to enable the current output stages and to pass the internal command value signal on to the ramp generator. The enable signal is indicated by an LED on the front panel. When the enable is granted, the internal command value changes over the set ramp time (with any command value selection). The valve does therefore not open suddenly when activated.

Ramp generator [4]

The ramp generator limits the gradient of the control output. The downstream step functions and amplitude attenuators do not shorten or extend the ramp time.
Note on the adjustment and measurement of the ramp time:

Value at measuring socket " $\mathrm{t}<$ " or " t >					>" U		5	3	2
Current ramp time (± 20 \%)						ms	20	33	50
U_{t} in V	1	0.5	0.3	0.2	0.1	0.05	0.03		0.02
t in ms	100	200	333	500	1000	2000	3333		5000

The following is valid: $\quad t=\frac{100 \mathrm{~V} \mathrm{~ms}}{U_{t}}$

$$
\begin{array}{lll}
\text { Example: } & \text { Measured } & U_{\mathrm{t}}=5 \mathrm{~V} \\
\text { results in } & t=\frac{100 \mathrm{~V} \mathrm{~ms}}{5 \mathrm{~V}}=20 \mathrm{~ms}
\end{array}
$$

Characteristic curve generator [5]

The adjustable characteristic curve generator can be used to adjust step-change heights symmetrically (with VT-MRPA2 only) and maximum values for positive and negative signals separately (with VT-MRPA2 only) to suit the hydraulic requirements. The actual line of the characteristic curve through the zero point is not stepped, but linear.

Amplitude limiter [6]

The internal command value is limited to approx. $\pm 110 \%$ (with VT-MRPA2) or $+110 \%$ (with VT-MRPA1) of the nominal range.

Oscillator [9]

The oscillator generates the control signal for the inductive position transducer.

Demodulator [10]

The demodulator generates the actual value signal of the valve spool position from the position transducer signal:
$\pm 100 \% \pm 10 \mathrm{~V}$ (with VT-MRPA2) or
$+100 \%+10 \mathrm{~V}$ (with VT-MRPA1), respectively

Controller for valve spool position [7]

The position controller is optimised specifically to the valve.

Current output stage [8]

The current output stage generates the clocked solenoid current for the proportional valve. The solenoid current is limited to 2.4 A to 2.6 A per output. The output stage outputs are short-circuit-proof. In the event of an internal fault signal or missing enable, the output stages are de-energised.

Fault detection [14]

The position transducer cable is monitored for cable break and primary-sided short-circuit, and the output stage for overcurrent.
[] = Cross-reference to block circuit diagrams on pages 4 and 5

A positiver command value causes an increase in current in the solenoid

Technical data (for applications outside these parameters, please consult us!)

Operating vo	U_{0}	$24 \mathrm{VDC}+40 \%-20 \%$
Operating range:		
- Upper limit	$u_{0}(t)_{\text {max }}$	35 V
- Lower limit	$u_{0}(t)_{\text {min }}$	18 V
Power cons	$P_{\text {S }}$	<24 VA
Current cons	1	$<2 \mathrm{~A}$
Fuse protect		Thermal overload protection (reclosing when the temperature falls below the threshold)
Inputs:		
- Analogue		
- Command value (differential input)	$\begin{aligned} & U_{i} \\ & U_{i} \end{aligned}$	0 to $\pm 10 \mathrm{~V}, R_{\mathrm{i}}>50 \mathrm{k} \Omega$ (current input on enquiry) 0 to $+10 \mathrm{~V}, R_{\mathrm{i}}>50 \mathrm{k} \Omega$ (current input on enquiry)
- Digital		
- Enable	U	8.5 V to $U_{\mathrm{O}}, R_{\mathrm{i}}>100 \mathrm{k} \Omega$
	\cup	0 to $6.5 \mathrm{~V}, R_{\mathrm{i}}>100 \mathrm{k} \Omega$
Adjustment ranges:		
- Command value zero point (potentiometer " Zw ")		± 30 \%
- Actual value zero point (potentiometer " $\mathrm{Zx}{ }^{\text {" }}$)		± 10 \%
- Ramp times (potentiometers " r < " and " t >")		20 ms to 5 s
- Step-change height (potentiometer "Sw")		0 \% to 50 \%
- Amplitude attenuator (potentiometers "G+" and "G-")		0% to 110% (valid for a step-change height setting of 0%)
Outputs:		
- Current out	1	0 to 2.5 A; short-circuit-proof; clocked, approx. 5 kHz
- Oscillator	$U_{\text {SS }}$	$10 \mathrm{~V} ; 10 \mathrm{~mA}$
	f	$5.6 \mathrm{kHz} \pm 10 \%$
- Measuring sockets		
- Ramp ti	U	20 mV to 5 V
- Ramp ti	\cup	20 mV to 5 V
- Actual value "x"	U	0 to $\pm 10 \mathrm{~V}$
	\cup	0 to +10 V
- Command value "w" VT	U	0 to $\pm 10 \mathrm{~V}$
	\cup	0 to +10 V
- Command value after ramp "wR"	\cup	0 to $\pm 10 \mathrm{~V}$
	\cup	0 to -10 V
Type of connection		12 screw terminals
Type of mounting		Top hat rail TH 35-7.5 to EN 60715
Type of protection		IP 20 to EN 60529
Dimensions ($\mathrm{W} \times \mathrm{H} \times \mathrm{D}$)		$40 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range $\quad \vartheta$		0 to $+50^{\circ} \mathrm{C}$
Storage temperature range $\quad \vartheta$		-25 to $+70^{\circ} \mathrm{C}$
Weight m		0.14 kg

㨁宿 Note!

Details with regard to environment simulation testing in the fields of EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30219-U (declaration on environmental compatibility).

${ }^{1)}$ and position transducer, primary (connection 2)

Unit dimensions (nominal dimensions in mm)

LED indicator lamps:

() Readiness for operation (green)

- Enable (yellow)

Potentiometers:

Gw+ Amplitude attenuator for positive command values
Gw- Amplitude attenuator for negative command values (only with VT-MRPA2)
Sw Step-change height for negative and positive direction

Zw Command value zero point
Zx Actual value zero point
$t<\quad$ Ramp time for rising command values
t> Ramp time for falling command values
Measuring sockets:
$\mathrm{t}<$ Ramp time "up"
t> Ramp time "down"
x Actual value
w Command value
wR Command value after ramp
$\perp \quad$ Measuring zero

Engineering / maintenance notes / supplementary information

- The amplifier module may only be wired when disconnected from the power supply!
- Do not lay cables near power cables!
- Do not use free-wheeling diodes in solenoid cables!
- The distance to aerial lines, radio sources and radar equipment must be at least 1 m !
- Always shield command value and position transducer cables; connect the shield to the protective earth (PE) on the module side!
In individual cases (e.g. in the case of PE with severe interference) it may be required to connect the shield of the position transducer cable directly to LO of the amplifier module; leave the other end open (risk of earth loops).
Recommendation: Also shield solenoid cables!
For solenoid cables up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$!
For greater lengths, please consult us!
- For passing on command values, use relays with gold-plated contacts (small voltages, small currents)!
- Measurements on the module may only be taken with instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$.
- To adjust the potentiometers, use a screw driver with a blade width of 4 mm !
- In the case of strongly fluctuating operating voltages, it may be required to install an external smoothing capacitor having a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11073 (see RE 29750), sufficient for up to 3 amplifier modules

Adjustment recommendation

The system-specific circuitry must be completed.

Signal	Setting for VT-MRPA2	Setting for VT-MRPA1
Command value zero point	- Set external command value feedforward to zero - Set the internal command value to zero using zero point potentiometer " Zw " and check the setting at measuring socket "wR"	- Set external command value feedforward to zero - Set the internal command value to zero using zero point potentiometer " Zw " and check the setting at measuring socket "wR"
Actual value zero point	- Set enable signal to "OFF" or disconnect solenoid plug-in connector (Valve moves to the mechanical centred position) - Set the actual value at measuring socket " x " to zero using potentiometer " Zx " Recommendation: In the case of valves with V-spools, adjust the zero point during operation with the hydraulic drive, i.e. - Apply enable signal and check at measuring sockets "wR" and "w" - Use potentiometer "Zx" to bring the hydraulic drive to a standstill	- Set enable signal to "OFF" or disconnect solenoid plug-in connector (Valve moves to end position) - Set the actual value at measuring socket " x " to zero using potentiometer " Zx " Recommendation: In the case of valves with V-spools, adjust the zero point during operation with the hydraulic drive, i.e. - Apply enable signal and check at measuring sockets "wR" and "w" - Use potentiometer " Zx " to bring the hydraulic drive to a standstill
Ramp times	- Set ramp time according to formula or table (see functional description "Ramp generator") and check at measuring sockets " $\mathrm{t}>$ " and " $\mathrm{t}<$ "	- Set ramp time according to formula or table (see functional description "Ramp generator") and check at measuring sockets " $\mathrm{t}>$ " and " $\mathrm{t}<$ "
Step-change height	- Apply enable signal - Set the measuring signal at " $w R$ " to +0.3 V using zero point potentiometer " Zw " - Set the required step-change height using potentiometer "Sw" - Set the measuring signal at " $w R$ " to -0.3 V using zero point potentiometer " Zw " - Check the required step-change height, adjust zero point Note: In the case of an external command value feedforward, at least $+0.3 \mathrm{~V} /-0.3 \mathrm{~V}$ must be measured at measuring socket "wR".	- Apply enable signal - Set the measuring signal at " $w R$ " to -0.3 V using zero point potentiometer " Zw " - Set the required step-change height using potentiometer "Sw" - Check the required step-change height, adjust zero point Note: In the case of an external command value feedforward, at least -0.3 V must be measured at measuring socket "wR"
Maximum values	Note: Before the maximum values are matched, the zero point and step-change heights must have been correctly set. - Adjust step-change heights first; generate $\pm 100 \%$ command value externally - Use potentiometers "Gw+"/"Gw-" to adjust the required maximum control output and check the settings at measuring sockets " $w R$ " and " w "	Note: Before the maximum values are matched, the zero point and step-change heights must have been correctly set. - Adjust step-change heights first; generate +100 \% command value externally - Use potentiometer "Gw" to adjust the required maximum control output and check the settings at measuring sockets " $w R$ " and " w "

Notes

C This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric amplifiers

Type VT-VRPA1-5...-1X/V0/...

Component series 1X

Features

Page - Suitable for controlling proportional valves
1 - Analog amplifiers in Europe format for installation in 19" racks
2 - Controlled output stage
2 - Position control with PID behavior
3 - Fast energization and fast deletion for short actuating times
4 - Enable input
5 - Cable break detection for actual value cable

- Inputs and outputs short-circuit-proof

5 - Adjustment possibilities for zero point and sensitivity

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Type	Material number	For proportional valves
VT-VRPA1-527-10/V0	0811405095	DBETFX
VT-VRPA1-527-10/V0/PV	0811405096	DREB6X
VT-VRPA1-537-10/V0/PV	0811405097	DBEB10Z / DREB10Z / DBETBX
VT-VRPA1-527-10/V0/QV	0811405098	4WRP6EA / 3FREZ
VT-VRPA1-537-10/V0/QV	0811405099	4WRP10EA

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data

Notice:

Power zero b2 and control zero b12 must be bridged. If the distance to the power supply unit is $<1 \mathrm{~m}$, directly onto the DIN connector.
With larger distances, lead the control zero separately to the ground.

1) 0 V with $I_{\mathrm{m}}=0 \mathrm{~V}$ (enable OFF)
+10 V with $I_{\mathrm{m}}=\max .\left(U_{\mathrm{E}}=10 \mathrm{~V}\right.$, potentiometer $\left.=c_{\mathrm{w}}\right)$

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electric amplifiers

Type VT-VRPA1-5...-1X/...-RTP

Component series 1X

Features

- Suitable for controlling proportional valves
- Analog amplifiers in Europe format for installation in 19" racks
- Controlled output stage
- Position control with PID behavior
- Fast energization and fast deletion for short actuating times
- Enable input
- Adjustable ramp that can be switched off
- Cable break detection for actual value cable

5 - Inputs and outputs short-circuit-proof

- Adjustment possibilities for zero point and sensitivity, acceleration and braking ramp

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Type	Material number	For proportional valves
VT-VRPA1-527-10/V0/RTP	0811405100	DBETFX
VT-VRPA1-527-10/V0/PV-RTP	0811405101	DREB6X
VT-VRPA1-537-10/V0/PV-RTP	0811405102	DBEB10Z / DREB10Z / DBETBX
VT-VRPA1-527-10/V0/QV-RTP	0811405103	4WRP6EA / 3FREZ
VT-VRPA1-537-10/V0/QV-RTP	0811405104	4WRP10EA

Suitable card holder:

- Open card holder VT 3002-1-2X/32F (see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data

Supply voltage U_{B} at b16/b18	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)	
Smoothing capacitor, separately at b16-b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{\mathrm{B}}>10 \%$	
Valve solenoid max. A/W	2.7/25 (size 6)	3.7/50 (size 10)
Power consumption, max. W	35	60
Current consumption, max. A	1.5	2.5
Solenoid output b6 - b8	Rectangular voltage, pulse-modulated$\begin{array}{l\|l} I_{\text {max. }}=2.7 \mathrm{~A} & I_{\text {max. }}=3.7 \mathrm{~A} \end{array}$	
Command value	$\left.\begin{array}{lll}U_{\text {EI }}: 0 \ldots+10 \mathrm{~V} & (z 10) \\ & : 0 \mathrm{~V} & (z 12)\end{array}\right\}$Difference $U_{\text {E II }}: 0 \ldots+10 \mathrm{~V}$ $U_{\text {EIII }}$$: 0 \ldots+10 \mathrm{~V}$	
Signal source (command value)	Potentiometer $R_{\mathrm{i}}=1 \mathrm{k} \Omega$Supply with +10 V from b32 $(10 \mathrm{~mA})$ or external source	
Actual value feedback	Osci b26	Test point z28 ${ }^{1)}$
0811405100	$10.2 \mathrm{~V}_{\text {eff }} / 7.8 \mathrm{kHz}$	$0 \ldots+10 \mathrm{~V}=$
0811405101	$10.2 \mathrm{~V}_{\text {eff }} / 7.8 \mathrm{kHz}$	$0 \ldots+10 \mathrm{~V}=$
0811405102	$10.8 \mathrm{~V}_{\text {eff }} / 7.8 \mathrm{kHz}$	$0 \ldots+10 \mathrm{~V}=$
0811405103	$10.2 \mathrm{~V}_{\text {eff }} / 7.8 \mathrm{kHz}$	$0 \ldots+10 \mathrm{~V}=$
0811405104	$10.8 \mathrm{~V}_{\text {eff }} / 7.8 \mathrm{kHz}$	$0 \ldots+10 \mathrm{~V}=$
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}$; e.g. 10 V from z 32 LED (green) on front plate lights up	
Ramp OFF	At b20; $U=8.5 \mathrm{~F} .40 \mathrm{~V}$	
Cable lengths between amplifier and valve	Solenoid cable: $<20 \mathrm{~m} 1.5 \mathrm{~mm}^{2}$$20 \ldots 50 \mathrm{~m} \quad 2.5 \mathrm{~mm}^{2}$Position transducer: Max. $50 \mathrm{~m}^{2}$ with $100 \mathrm{pF} / \mathrm{m}$Supply and capacitor $1.5 \mathrm{~mm}^{2}$	
LED displays	green: Enable yellow: Cable break actual value / ramp OFF red: $\quad U_{\mathrm{B}}<U_{\mathrm{B} \text { min. }}$ (approx. 21 V)	
Error message - Cable break actual value - U_{B} too low - $\pm 15 \mathrm{~V}$ stabilization	z26: Switching output No error +24 V (max. 100 mA) Error 0 V	
Short-circuit-proof outputs	Output stage to the solenoid, Signal to the positional transducer Supply voltage for potentiometer	
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Adjustable ramp that can be switched off	
Adjustment via trimming potentiometer	1. Zero point 2. Sensitivity	3. Acceleration ramp 4. Braking ramp
Circuit board format mm	$(100 \times 160 \times \text { approx. } 35) /(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$ Europe format with front plate 7 TE	
Plug-in connection	Connector DIN 41612 - F32	
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	0...+70	
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20... +70	
Weight m	0.36 kg	

Notice:

Power zero b 2 and control zero b 12 must be bridged. If the distance to the power supply unit is $<1 \mathrm{~m}$, directly onto the DIN connector. With larger distances, lead the control zero separately to the ground.

[^17]
Setting information

Information for the use of ramps
Ramp ON: No signal at b20.
Ramp OFF: 8.5... 40 V at b20 or connection between b22 and b20.

In case of Ramp OFF or Cable break, any ramp started before will be canceled. Transition to the signal end value is effected by means of a step.

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging

Analogue amplifier

Type VT-VRPA1-...

Component series 1X

Overview of contents

Contents

Overview of contents
Features
Ordering details
Functional description
Technical data
Block circuit diagram / connection allocation
Display/adjustment elements
Engineering/maintenance guidelines, additional information Unit dimensions

Card holder:

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply

Power supply:

- Type VT-NE30-1X, see RE 29929

Compact power supply 115/230 VAC $\rightarrow 24$ VDC, 70 VA

Features

- Suitable for controlling direct operated proportional pressure control valves with electrical position feedback, type DBETR, and proportional flow control valves with electrical position feedback, type 2FRE(G)
- Plug-in connections compatible with those of amplifier types VT 5003, VT 5004 and VT 5010
- Power supply with raised zero point
- Command value signal inputs:
-0 to $+6 \mathrm{~V} ; 0$ to $+9 \mathrm{~V} ; 0$ to +10 V
- 0 to $20 \mathrm{~mA} ; 4$ to 20 mA (plug-in bridges)
- Potentiometer adjustment on the front plate for the zero point and amplitude attenuation
- Measurement sockets for the ramp time
- Enable input and "ramp off" input
- Plug-in bridges for switching the maximum ramp times 0.02 to 5 s or 0.2 to 50 s
- Outputs for command value (0 to +6 V) and actual value (0 to -6 V)
- LED display "operational"
- Polarity protection

Ordering details

Amplifier for proportional valves with electrical feedback, analogue, with one output stage	VT-VRPA1 $\frac{1}{1}$-1X/V0/10 *			
		$1 \mathrm{X}=$	Further details in clear text	
			Component series 10 to 19 (10 to 19: unchanged techncial data and connection allocation)	
Amplifier for proportional pressure valves				
DBETR-1X	$=100$			
2FRE 6	$=150$			
2FRE 10 and 16	= 151	When replacing amplifier types VT 5003, VT 5004 or VT 5010 for rack installation, a 4TE/3HE dummy plate must be ordered separately.		

Functional description

Power supply

After the operating voltage has been applied the internal power supply [6] supplies a voltage of $\pm 9 \mathrm{~V}$ compared to the measurement zero (MO). This is compared to the load zero (LO) raised by +9 V . The voltages +9 V and $-9 \mathrm{~V}(-9 \mathrm{~V}$ relates to LO) are fed to the plug strip X1 and can thereby be externally (e.g. for a command value potentiometer) used. The maximum loading is 25 mA .

Operational

The amplifier card is operational when the following conditions have been fulfilled:

- Operating voltage $>20 \mathrm{~V}$
- There is no unsymmetry in the internal supply voltages
- No cable break in the position transducer cables
- No short circuit in the solenoid cables

That the unit is operational is indicated by a green LED lighting up on the front plate.

Command value

The command value signal is applied either directly from the regulated +9 V of the power supply [6] or via an external command value potentiometer. For the input "command value $1^{"}+9 \mathrm{~V}=+100 \%$ applies and for the input "command value $2^{\prime \prime}+6 \mathrm{~V}=+100 \%$ applies. The reference point for the command value inputs 1 and 2 is always MO (18ac). Command value input 3 is a differential input [1] (0 to +10 V). It can be configured as a current input (0 to 20 mA or 4 to 20 mA) via plug-in bridges. If the command value signal comes from external electroncis with a different reference potential then the differential input is to be used.
When the command value voltage is applied or withdrawn care has to be taken to ensure that both of the signal lines are separated from the input or connected with it. All of the command values are, before being switched, summated [2] with regard to the value and pre-sign. With potentiometer „Zw" it is possible to compensate for off-set voltages in the command value branch.

External command value potentiometer (with a 9 V command value input)

Ramp function

The subsequent ramp generator [3] produces from a jump form of applied input signal an output signal in the form of a ramp. The time constants of the output signal (ramp times) can be adjusted by potentiometers " 1 1" (upwards ramp) and "t2" (downwards ramp) which are accessible via the front panel. The maximum ramp time stated relates to a command value jump of 100% and can, dependent on the plug-in bridge settings (X8, X 9), be either approx. 5 s or 50 s . If a command value signal is applied onto the input of the ramp generator [3] that is less than 100% then the ramp time is reduced accordingly. The actual ramp time can be checked at the measurement sockets „ t 1 " (upwards ramp) and „t2" (downwards ramp).
For details see „Technical data"

External time potentiometer

Note

When using an external time potentiometer the internal potentiometers for the ramp times must be set to their maximum (voltages at the measurement sockets „t1" and „t2" are approx. 20 mV). The maximum ramp time reduces as the resistance value of the external potentiometer (approx. $500 \mathrm{k} \Omega$) is switched in parallel to the internal potentiometers. In this case it is not possible to separately adjust the ramp times for the up and down ramps.
By applying a voltage $>10 \mathrm{~V}$ at the switched input "ramp off" or by setting the plug-in bridge X 4 the ramp time is set to its minimum value (approx. 15 ms). The switched input is then ineffective. The minimum value then applies to both directions.

Functional description (continued)

Calculating the ramp times

Plug-in bridge $\mathbf{X} 9$ is fitted („short" ramp time)

$$
\begin{aligned}
& \boldsymbol{t}_{\mathrm{up}}=\frac{0.1}{\boldsymbol{U}_{\mathrm{t} 1}} \text { (in s) } \\
& \stackrel{t_{\text {down }}}{=} \frac{0.1}{\boldsymbol{U}_{\mathrm{t} 2}} \text { (in s) }
\end{aligned}
$$

Plug-in bridge $\mathbf{X 8}$ is fitted („long" ramp time)

$$
\begin{aligned}
& t_{\mathrm{up}}=\frac{1}{U_{\mathrm{t} 1}} \text { (in s) } \\
& \stackrel{t_{\text {down }}}{=} \frac{1}{U_{\mathrm{t} 2}} \text { (in s) }
\end{aligned}
$$

$U_{\mathrm{t} 1} ; U_{\mathrm{t} 2} \ldots$ voltages at the measurement sockets „${ }^{\mathrm{t} 1}{ }^{\text {" }}$ or „ t 2 " (in V)

Limiting and position controller

From the output of the ramp generator [3] the command value signal is passed to potentiometer "Gw", which is accessible via the front panel, which acts as an attenuator. The maximum flow of the valve can be thereby adjusted. The subsequent limiter
[7] limits the command value to $+105 \%$ or -5% (e.g. with a command value that is too high or by adjusting the zero point " Zw " potentiometer and the basic value " Gw ") so that the valve spool is prevented from hitting the mechanical end position. The output signal of the limiter [7] is the actual position signal and is connected to the PID controllers [8] and via an output stage [17] to the measurement socket "w" on the front plate of the card as well as connection 28c on the plug strip X1 (command value to ramp and limiter). A voltage of +6 V at the command value measurement socket " w^{\prime} relates to a command value of $+100 \%$. The PID controller is optimised specifically to the requirements of DBETR and FRE valves. The controller compares the position command value and the actual position value; in the case of differences, a corresponding control output is fed to the current output stage [13], the output signal of which controls the proportional solenoid of the valve.

Position sensing

The position transducer electronics comprise of an oscillator [14] with a subsequent driver [15] for controlling the inductive position transducer and a demodulator [16] for evaluating the position transducer signal (actual value). The oscillator frequency is approx. 2.5 kHz . The inductive position transducer has to be connected as a throttle circuit with mid sensing. The position transducer electronics are factory pre-set. Very long or capasitive position transducer cables can result in the zero point having to be re-adjusted (via potentiometer „ $Z x^{*}$). The actual value (relates to the position of the valve spool) can be measured at the actual value measurement socket.

Note

The actual value signal is inverted when compared to the command value. A travel of 100% relates to -6 V at the actual value measurement socket and at connection 32a on the plug strip X1.

Enable input

With a signal $>10 \mathrm{~V}$ at the enable input 20 a the output stage and the I-controller are released (displayed via the yellow LED on the front plate). By setting the plug-in bridge X3 they are permanently released independent from the signal at the enable input. The switched input is thereby ineffective.
[] = Cross reference to the block circuit diagam see page 5

Technical data (for applications outside these parameters, please consult us!)

Continued from page 3

Inputs	- External ramp switch off	
	- Without ramp U_{R}	$>10 \mathrm{~V}$
	- With ramp U_{R}	$<9 \mathrm{~V}$
Adjustment ranges		
	- Zero point „Zw"	- 5% up to max. $+30 \%$
	- Command value attenuation „Gw"	0 \% to 105%
	- Ramp time „up"	
	- Short (bridge X9 fitted) $\quad t_{\text {up 1 }}$	$<20 \mathrm{~ms} \mathrm{to} 5 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 1}:-0.02 \mathrm{~V} \wedge\right.$ approx. $5 \mathrm{~s} ;-5 \mathrm{~V} \wedge$ approx. 20 ms$)$
	- Long (bridge X8 fitted) $t_{\text {up } 2}$	$<0.2 \mathrm{~s}$ to $50 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 1}:-0.02 \mathrm{~V} \triangleq\right.$ approx. $50 \mathrm{~s} ;-5 \mathrm{~V} \xlongequal{ }$ approx. 0.2 s$)$
	- Ramp time "down"	
	- Short (bridge X9 fitted) $t_{\text {down } 1}$	$<20 \mathrm{~ms}$ to $5 \mathrm{~s} \pm 20 \%$ ($\mathrm{U}_{\mathrm{t} 2}: 0.02 \mathrm{~V} \xlongequal{\wedge}$ approx. $5 \mathrm{~s} ;-5 \mathrm{~V} \triangleq$ approx. 20 ms)
	- Long (bridge X8 fitted) $\quad t_{\text {down } 2}$	$<0.2 \mathrm{~s}$ to $50 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 2}: 0.02 \mathrm{~V} \xlongequal{\wedge}\right.$ approx. $50 \mathrm{~s} ;-5 \mathrm{~V} \triangleq$ approx. 0.2 s$)$
Outputs	- Output stage	
	- Solenoid current/resistance $\quad I_{\text {max }}$	$\begin{aligned} & \text { 2.2 } \mathrm{A} \pm 10 \% / R_{(20)}=10 \Omega \text { (VT-VRPA1-100) } \\ & 2.2 \mathrm{~A} \pm 10 \% / \mathrm{R}_{(20)}=5.4 \Omega \text { (VT-VRPA1-150) } \\ & 2.2 \mathrm{~A} \pm 10 \% / R_{(20)}=10 \Omega \text { (VT-VRPA1-151) } \\ & \hline \end{aligned}$
	- Clock frequency	Free clocking (approx. 1.5 kHz)
	- Driver for the inductive position transducer	
	- Oscillator frequency	$2.5 \mathrm{kHz} \pm 10$ \%
	- Regulated voltage U	$\pm 9 \mathrm{~V} \pm 1 \%$ (with a raised zero point); $\pm 25 \mathrm{~mA}$ externally loadable
	- Measurement sockets	
	- Command value „w" U_{w}	0 V to $+6 \mathrm{~V}\left(R_{\mathrm{i}}=1 \mathrm{k} \Omega\right)$
	- Actual value „x" ${ }^{\text {x }}$	0 V to $-6 \mathrm{~V}\left(R_{\mathrm{i}}=1 \mathrm{k} \Omega\right)$
	- Upwards ramp „t1" $U_{\text {t1 }}$	-0.02 V up to approx. -5 V (delayed adjustment range)
	- Downwards ramp „t2" $U_{\text {t2 }}$	0.02 V up to approx. 5 V (delayed adjustment range)
Connection type		32-pin blade connection, DIN EN 60603-2, form D
Card dimensions		Euro card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front plate dimensions		
	- Height	3 HE (128.4 mm)
	- Width solder side	$1 \mathrm{TE}(5.08 \mathrm{~mm})$
	- Width component side	3 TE
Permissible operating temperature range $\quad \vartheta$		0 up to $50^{\circ} \mathrm{C}$
Storage temperature $\quad \vartheta$		$-25^{\circ} \mathrm{C}$ up $+70^{\circ} \mathrm{C}$
Weight m		0.15 kg

滁 Note!

For details regarding the environmental simulation test covering EMC (electro-magnetic compatibility), climate and mechanical loading see RE 30117-U (declaration regarding environmental compatibility).

Block circuit diagram / connection allocation

Display / adjustment elements

1) When replacing amplifier types VT 5003 , VT 5004 and VT 5010, jumper ХЗ (enable) must be set to "permanently ON".

Engineering / maintenance guidelines / additional information

- The amplifier card must be configured to match the application; see display/adjustment elements on page 6!
- The amplifier card may only be unplugged or plugged when switched off!
- For the solenoid connection, plugs fitted with free-wheeling diodes or LED displays must not be used!
- Measurements at the card may only be caried out with instruments $R_{i}>100 \mathrm{k} \Omega$!
- Measuring zero (M0) is increased by +9 V compared to the 0 V operating voltage and is not potentially separated, i.e. -9 V controlled voltage $\triangleq 0 \mathrm{~V}$ operating voltage. Therefore do not connect measuring zero (M0) with the 0 V operating voltage!
- For switching the command values use relays with gold contancts (small voltages, small currents)!
- For switching the card relay only use contacts with a load capacity of approx. $40 \mathrm{~V}, 50 \mathrm{~mA}$! When using an external control, the control voltage must only have a maximum residual ripple of 10% !
- Always screen command value lines; screen to be connected to the 0 V operating voltage on the card side, leave other side open (danger of earth loops)!
Recommendation: Also screen solenoid lines!
For solenoid cables of up to 50 m length use cable type LiYCY $1.5 \mathrm{~mm}^{2}$.
For longer lengths please consult us!
- The distance to antenna lines, radio sources and radar equipment must be at least 1 m !
- Do not lay solenoid and signal lines near power lines!
- Because of the loading current of the smoothing capacitor on the card, the pre-fuses must have slow blowing characteristics!
- The connection of the inductive position transducer that is marked with the ground symbol must not be connected to ground! (Precondition for the compatibility with amplifier types VT 5003, VT 5004 and VT 5010)
- Attention: When using the differential input, both inputs must always be switched on or off simultaneously!

Note: Electrical signals generated via control electronics (e.g. actual value) must not be used for switching safety-relevant machine functions!
(Also see the European Standard „Safety requirement for fluid power systems and components - Hydraulics", EN 982)

Preferred types

Type	Material number
VT-VRPA1-100-1X/V0/0	R901009038
VT-VRPA1-150-1X/V0/0	R901057058
VT-VRPA1-151-1X/V0/0	R901057060

c This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analogue Amplifiers

Type VT-VRPA1-50 to VT-VRPA1-52

Series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Block circuit diagram / pin assignment
Technical data
Unit dimensions
Indicator / adjustment elements
Engineering / maintenance notes / supplementary information

Features

- Suitable for controlling pilot operated proportional flow control valves (throttle valves) with electrical position feedback, types FE (sizes 16 and 25) and FES (sizes 25 to 63)
- In terms of plugs, compatible with amplifier types VT 5011, VT 5012 and VT 5062 to VT 5066 (depending on valve type and size)
- Power supply unit with raised zero point
- Command value signal inputs:
- 0 to $+6 \mathrm{~V} ; 0$ to $+9 \mathrm{~V} ; 0$ to +10 V
- 0 to 20 mA ; 4 to 20 mA (jumpers)
- Potentiometer adjustment for zero point and amplitude attenuation on the front panel
- Measuring sockets for ramp time
- Enable input and "ramp OFF" input
- Jumpers for changing over the maximum ramp time 0.02 s to 5 s or 0.2 s to 50 s
- Jumpers for adjustment to valve type and size
- Outputs for command value (0 to +6 V) and actual value (0 to -6 V)
- LED indicator lamp "ready for operation"
- Reverse polarity protection

Ordering code

- Types FES 32 and FES 40 (from series 3X each) $=51$
- Types FES 50 and FES 63 (from series $3 X$ each) $=52$

Suitable card holders:

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply unit

Suitable power supply unit:

- Type VT-NE30-1X, see RE 29929

Compact power supply unit 115/230 VAC $\rightarrow 24$ VDC, 70 VA
Further information:

- VT-PPV-1X, see RE 29687

When ordering spares for amplifiers VT 5011, VT 5012 and VT 5062 to VT 5066 for rack installation, a blind plate $4 \mathrm{TE} / 3 \mathrm{HE}$ must be ordered separately.
Material no.: R900021004

Functional description

Power supply unit

After the operating voltage was applied, the internal power supply unit [6] generates a voltage of $\pm 9 \mathrm{~V}$ as against measuring zero (M0). This is raised by +9 V when measured against load zero (LO). The voltages of +9 V and $-9 \mathrm{~V}(-9 \mathrm{~V}$ corresponds to L0) are applied to terminal strip X1 and can be used externally (e.g. for a command value potentiometer). The max. load carrying capacity is 25 mA .

Readiness for operation

The amplifier card is ready for operation, when the following conditions are fulfilled:

- Operating voltage $>20 \mathrm{~V}$
- No asymmetry of the internal supply voltages
- No cable break of position transducer cables
- No short-circuit in solenoid cables

The green LED on the front panel lights up to signal readiness for operation.

Command value

The command value voltage is provided either directly via the regulated voltage of +9 V from the power supply unit [6] or via an external command value potentiometer. The following is valid for input "command value 1 ": $+9 \mathrm{~V}=+100 \%$, and for input "command value 2 ": $+6 \mathrm{~V}=+100 \%$. The reference point for command value inputs 1 and 2 is always M0 (18ac). Command value input 3 is a differential input [1] (0 to +10 V). It can be configured as current input (0 to 20 mA or 4 to 20 mA) by plugging jumpers. If the command value is provided by external electronics with another reference potential, the differential input must be used.

When cutting the command value voltage in or out, care must be taken that always both signal lines are disconnected from or connected to the input. Before being passed on, all command values are summated correctly in terms of amount and sign [2]. Offset voltages in the command value branch can be compensated for by means of potentiometer " $Z \mathrm{w}$ ".

External command value potentiometer (for 9V command value input)

Ramp function

The ramp generator [3] connected downstream generates a ramp-shaped output signal from a stepped input signal. The time constants of the output signal (ramp times) can be adjusted by means of potentiometers " t 1 " ("up" ramp) and "t2" ("down" ramp) that are accessible on the front panel. The maximum ramp time given refers to a command value step-change of 100% and can be approx. 5 s or 50 s depending on the jumper configuration (X8, X9). If a command value step-change of less than 100% is applied to the input of the ramp generator [3], the ramp time shortens accordingly. The current ramp time can be checked at measuring sockets " t 1 " ("up" ramp) and "t2" ("down" ramp).
For details, see "Technical data"

Functional description (continued)

External time potentiometer

Note:
When an external time potentiometer is used, the internal potentiometers for the ramp times must be set to maximum (voltages at measuring sockets "t1" and "t2" approx. 20 mV). The maximum ramp time decreases, since the resistance of the external potentiometer is connected in parallel to that of the internal potentiometer (approx. $500 \mathrm{k} \Omega$). In this case, the ramp time for the "up" and "down" ramp cannot be adjusted separately.
By applying a voltage $>10 \mathrm{~V}$ to the switching input "ramp OFF" or by plugging jumper X 4 , the ramp time is set to its minimum value (approx. 15 ms). The switching input then becomes ineffective. In this case the minimum value is valid for both directions.

Calculation of the ramp times

Jumper X9 plugged
(ramp time "short")
Jumper X8 plugged

$$
\begin{array}{ll}
t_{\mathrm{up}}=\frac{0,1}{U_{\mathrm{t} 1}} \text { (in s) } & t_{\mathrm{up}}=\frac{1}{U_{\mathrm{t} 1}} \text { (in s) } \\
t_{\text {down }}=\frac{0,1}{U_{\mathrm{t} 2}} \text { (in s) } & t_{\text {down }}=\frac{1}{U_{\mathrm{t} 2}} \text { (in s) }
\end{array}
$$

$\mathrm{U}_{\mathrm{t} 1} ; \mathrm{U}_{\mathrm{t} 2} \quad \cdots$ voltage at measuring socket " t_{1} " or " t_{2} " (in V)

Limiter and position controller

The command value voltage is fed from the output of the ramp generator [3] to potentiometer " Gw ", which is accessible on the front panel and acts as attenuator. It can be used to adjust the maximum flow through the valve. The downstream limiter [7] limits the command value to $+105 \%$ or -5% (e.g. in the case of an excessively high command value voltage or maladjustment of the potentiometers for zero point " Zw " and basic value " Gw ") in order to prevent the valve spool from hitting the mechanical end positions. The output signal of the limiter [7] is the position command value and is fed to the PID-controllers [8] and, via output stage [17], to measuring socket " w " on the front panel of the card as well as to connection 28 c on terminal strip X1 (command value after ramp and limiter). A voltage of +6 V at command value measuring socket " w " corresponds to a command value of $+100 \%$. The PID-controllers are optimised to the individual valves. Before the card is installed, the plug-in jumpers X2 have to be plugged at the position provided for the valve type to be controlled (see also tags at the back of the printed circuit board). The controllers compare the position command values and actual position values; in the case of a difference, a corresponding control variable is output. The downstream summator [11] adds to the control output a square-wave voltage generated by the dither generator [10]; the resulting signal is passed on to the current output stage [13], whose output signal controls the proportional solenoid of the throttle valve.

Position acquisition

The position transducer electronics consists of an oscillator [14] with downstream driver [15] for controlling the inductive position transducer and a demodulator [16] for evaluating the position transducer signal (actual value). The oscillator frequency is approx. 2.5 kHz . The inductive position transducer must be connected in a reactance circuit with central pick-off. The position transducer electronics is matched in the factory. In the case of very long or capacitive position transducer cables, delays resulting from the signal running time and line attenuation may require a re-adjustment of the zero point (using potentiometer " Zx ") and the gain (using potentiometer " Gx "). The actual value (corresponds to the position of the valve spool) can be measured at the measuring socket.
Note:
The actual value signal is output inverted against the command value. A travel of 100% corresponds to -6 V at the actual value measuring socket and connection 32a of terminal strip X1 .

Enable input

A signal $>10 \mathrm{~V}$ at enable input 20a enables the output stage and the I-controller (indicated by yellow LED on the front panel). By plugging jumper X3 they are permanently enabled independently of the signal at the enable input. The switching input becomes ineffective.
[] = Cross-reference to block circuit diagram on page 4

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{O}	24 VDC +40 \% -5 \%
Operating range:		
- Upper limit value	$U_{0}(t)_{\text {max }}$	35 V
- Lower limit value	$U_{0}(t)_{\text {min }}$	22 V
Power consumption	P_{S}	$<30 \mathrm{~W}$
Current consumption	1	$<1.3 \mathrm{~A}$
Fuse	$I_{\text {F }}$	2.5 A T
Inputs:		
- Command value 1	U_{i}	0 V to +9 V (reference potential is MO)
- Command value 2	U_{i}	0 V to +6 V (reference potential is MO)
- Command value 3 (differential input)	U_{i}	0 V to +10 V
or	$I_{\text {i }}$	0 mA to $20 \mathrm{~mA}\left(R_{\mathrm{i}}=100 \Omega\right)$
or	I_{i}	4 mA to $20 \mathrm{~mA}\left(R_{\mathrm{i}}=100 \Omega\right)$
- Enable		
- active	U_{E}	$>10 \mathrm{~V}$
- not active	U_{E}	$<9 \mathrm{~V}$
- External ramp deactivation		
- without ramp	U_{R}	$>10 \mathrm{~V}$
- with ramp	U_{R}	$<9 \mathrm{~V}$
Adjustment ranges:		
- Zero point "Zw"		-5 \% to max. $+30 \%$
- Command value attenuator "Gw"		0 \% to 105%
- Ramp time "up"		
- short (jumper X9 plugged)	$t_{\text {up } 1}$	$<20 \mathrm{~ms}$ to $5 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 1}:-0.02 \mathrm{~V} \xlongequal{\text { c ca. }} 5 \mathrm{~s} ;-5 \mathrm{~V}\right.$ ca. 20 ms$)$
- long (jumper X8 plugged)	$t_{\text {up } 2}$	$<0.2 \mathrm{~s}$ to $50 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 1}:-0.02 \mathrm{~V} \xlongequal{\wedge}\right.$ ca. $\left.50 \mathrm{~s} ;-5 \mathrm{~V} \xlongequal{\text { cas. }} 0.2 \mathrm{~s}\right)$
- Ramp time "down"		
- short (jumper X9 plugged)	$t_{\text {down } 1}$	$<20 \mathrm{~ms}$ to $5 \mathrm{~s} \pm 20 \%$ ($U_{\mathrm{t} 2}: 0.02 \mathrm{~V} \triangleq$ ^ca. $5 \mathrm{~s} ; 5 \mathrm{~V} \triangleq \mathrm{~N}$ ca. 20 ms)
- long (jumper X8 plugged)	$t_{\text {down 2 }}$	$<0.2 \mathrm{~s}$ to $50 \mathrm{~s} \pm 20 \%\left(U_{\mathrm{t} 2}: 0.02 \mathrm{~V} \xlongequal{\wedge}\right.$ ca. $\left.50 \mathrm{~s} ; 5 \mathrm{~V} \xlongequal{\wedge} \mathrm{ca} .0 .2 \mathrm{~s}\right)$
Outputs:		
- Output stage		
- solenoid current / resistance	$I_{\text {max }}$	$1.2 \mathrm{~A} \pm 10 \% / R_{(20)}=12.7 \Omega$
- biasing current VT-VRPA1-50, VT-VRPA1-52	I_{V}	550 mA
VT-VRPA1-51	Iv	400 mA
- clock-pulse frequency	f	freely clocking (ca. 1.5 kHz)
- superimposed dither frequency	f	$300 \mathrm{~Hz} \pm 10$ \%
- Driver for inductive position transducer		
- oscillator frequency	f	$2.5 \mathrm{kHz} \pm 10$ \%
- Regulated voltage	U	$\pm 9 \mathrm{~V} \pm 1$ \% (with raised zero point); $\pm 25 \mathrm{~mA}$ externally loadable
- Measuring sockets		
- command value "w"	$U_{\text {w }}$	0 V to $+6 \mathrm{~V}\left(R_{\mathrm{i}}=1 \mathrm{k} \Omega\right)$
- actual value "x"	U_{x}	0 V to $-6 \mathrm{~V}\left(R_{\mathrm{i}}=1 \mathrm{k} \Omega\right)$
- "up" ramp "t1"	$U_{t 1}$	-0.02 V to ca. -5 V (cf. adjustment ranges)
- "down" ramp "t2"	$U_{\text {t2 }}$	0.02 V to ca. 5 V (cf. adjustment ranges)

Technical data (for applications outside these parameters, please consult us!)

Type of connection	32-pin male connector, DIN 41612, form D
Card dimensions	Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions:	
- Height	$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width soldering side	$1 \mathrm{TE}(5.08 \mathrm{~mm})$
- Width component side	3 TE
Permissible operating temperature range	ϑ
Storage temperature range	ϑ
Weight	$-20^{\circ} \mathrm{C}$

㕷 Note!
For details regarding environment simulation test in the field of
EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30117-U (declaration on environmental compatibility).

Unit dimensions (Dimensions in mm)

LED indicator lamps:

(). Readiness for operation (green)

- Enable (yellow)

Potentiometers:

Zw Command value zero point
Gw Command value attenuator
t1 Ramp time "up"
t2 Ramp time "down"
Cannot be adjusted from front panel:
Zx Actual value zero point
Gx Actual value
Measuring sockets:
t1 Ramp time "up"
t2 Ramp time "down"
x \quad Actual value
w Command value
$\perp \quad$ Measuring zero
${ }^{1)}$ In the case of spares for amplifier types VT 5011 and VT 5012, jumper X3 (enable) must be plugged to "permanently ON".
${ }^{2)}$ Optionally for FES25, jumper X2 on 5-6 with $\Delta p<120$ bar of the hydraulic system (higher electrical gain)
... Jumper plugged

- \quad... Jumper open
... Factory setting of jumpers

Engineering / maintenance notes / supplementary information

- The amplifier card must be configured according to the relevant application; see "Indicator / adjustment elements" on page 6!
- The amplifier card may only be plugged in or withdrawn when disconnected from the power supply!
- Do not use connectors with free-wheeling diodes or LED lamps for connecting the solenoids!
- Measurements on the cards may only be taken using instruments with $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- The measuring zero (M 0) is raised by +9 V as against the 0 V operating voltage and is not electrically isolated, i.e. -9 V regulated voltage $=0 \mathrm{~V}$ operating voltage. The measuring zero (MO) must , therefore, not be connected with the 0 V operating voltage!
- Use relays with gold-plated contracts for passing on command values (small voltages, small currents)!
- Only use contacts with a loadability of approx. $40 \mathrm{~V}, 50 \mathrm{~mA}$ for switching relays! In the case of external controlling, the control voltage may have a maximum residual ripple content of 10% !
- Command value cables must always be shielded; connect the shield to OV operating voltage on the card side and leave the other end open (risk of earth loops)!
Recommendation: Also shield solenoid cables!
For solenoid cables of a length up to 50 m , use cable type LiYCY $1.5 \mathrm{~mm}^{2}$.
In the case of greater lengths, please consult us!
- The distance to aerial lines, radio equipment and radar systems must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Due to the charging current of smoothing capacitors on the card, back-up fuses must be of the slow-blowing type!
- The connection of the inductive position transducer identified with the ground symbol must not be connected to the ground! (Precondition for the compatibility with amplifier types VT 5011, VT 5012 and VT 5062 to VT 5066)
- Attention: When using the differential input, both inputs must always be switched on or off simultaneously!

Note: Electrical signals processed by control electronics (e.g. actual value) must not be used for activating
safety-relevant machine functions! (See also European standard "Safety requirements for fluid power systems and components - Hydraulics", EN 982)

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) $9352 / 18-0$
Telefax +49 (0) $9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Valve amplifier for proportional directional valves

Type VT-VRPA2

RE 30119

Edition: 2013-04
Replaces: 07.05

Features

- Differential input ($\pm 10 \mathrm{~V}$)
- Four callable command value inputs ($\pm 10 \mathrm{~V}$)
- Current input ($4 \ldots 20 \mathrm{~mA}$)
- Inversion of the internal command value signal via 24 V input or jumper
- Selection of ramp time via quadrant recognition (24 V input) or ramp time call-ups (24 V inputs) with option T5
- Selection of the ramp time range via jumper
- Characteristic curve correction by means of separately adjustable step levels and maximum values
- Enable input
- "Ready for operation" output signal
- Switchable measuring socket with option T5
- Reverse polarity protection for the voltage supply
- Power supply with DC/DC converter without raised zero point
- Component series 1 X
- Analog, Euro-card format
- Suitable for controlling 4/3 proportional directional valves with electrical position feedback:
- 4WRE 6...-2X,
- 4WRE 10...-2X

Contents

Features 1

Ordering code 2
Function 2
Block diagram/pin assignment, option T1 4
Block diagram/pin assignment, option T5 5
Technical data 6
Display/adjustment elements, option T1 7
Display/adjustment elements, option T5 8
Dimensions 10
Project planning / maintenance instructions / additional information

Ordering code

01	Valve amplifier for proportional directional valves and proportional pressure valves, analog, euro-card format	VT-VRPA2
02	For controlling 4/3 proportional directional valves 4WRE 6...-2X	1
	For controlling 4/3 proportional directional valves 4WRE 10...-2X	2
03	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	1X
04	Version: Standard	vo
05	Option: With one ramp time	T1
	Option: With five ramp times	T5
06	Further details in the plain text	*

Accessories

- Open card holder VT 3002-1-2X/48F (see data sheet 29928)

Function

Power supply unit [1]

The amplifier card has a power supply unit with making current limiter. This unit supplies all internally required positive and negative supply voltages.

Command value specification

The internal command value signal is calculated from the total (summation [6]) of the external command value signal available at the differential input [2] and at the current input [3], the called-up signal [4] and the zero point offset [5] (zero point potentiometer "Zw").

The following applies:

Standard values	Current input	Differential input	Command value measur- ing socket	Flow direction
-100%	4 mA	-10 V	-10 V	P to B, A to T
0%	12 mA	0 V	0 V	
100%	20 mA	10 V	10 V	P to A, B to T
0%	$<1 \mathrm{~mA} \mathrm{1)}$		0 V	

1) If the current input is not wired-up or if the cable of the current command value is broken, the resulting internal command value signal is 0%.

There is no switch-over between current and voltage input. The inputs are permanently available (see block diagram).

Command value call-ups [4]

Four command value signals "w1" to "w4" can be called up. The external command value voltages (command values 1 to 4) are either defined directly by the regulated voltage outputs +10 V and -10 V or via external potentiometers. If these command value inputs are directly connected to the regulated voltages, the command values are set at the potentiometers " $w 1$ " to " $w 4$ ". When using external potentiometers, the internal potentiometers will function as attenuators or limiters.
Only one call-up can be operated at the same time. If several call-ups are operated simultaneously, call-up "1" has the lowest priority and call-up "4" has the highest priority. The respective active call-up is indicated via a yellow LED on the front plate.

Command value inversion [7]

The command value created internally from the input signals, the command value call-ups and the zero point offset signal can be inverted by an external signal or jumper J 1 . The inversion is indicated by an LED ("-1") on the front plate.

Enable function [8]

The enable function enables the power output stages and forwards the internal command value signal to the ramp generator. The enable signal is indicated by an LED on the front plate. If enable is connected, the internal command value is changed (with any kind of command value specification) by the set ramp time. Thus, a controlled valve does not open abruptly.

Ramp generator [9]

The ramp generator limits the rise of the control output. The downstream step functions and amplitude attenuators do not extend or shorten the ramp time.
Using jumper J2, the ramp time is set to a minimum (< 2 ms) (ramp off).
External ramp time setting:
Using an external potentiometer, the internally set ramp time can be extended. The setting can be verified by means of the measuring socket. In case of a cable break, the internal default setting will be valid automatically.

Note for setting and measuring the ramp time:

Value at measuring socket "t" (T1) / "v" (T5)							5	3	2
Current ramp time (± 20 \%)							20	33	50
$U_{\text {t }} / \mathbf{V}$	1	0.5	0.3	0.2	0.1	0.05	0.03		0.02
$\boldsymbol{t / m s}$	100	200	333	500	1000	2000	3333		5000

By closing the jumper J3, the ramp times specified above can be increased tenfold.

Characteristic curve generator [11]

Using the adjustable characteristic curve generator, the step level and maximum values for positive and negative signals can be set separately according to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear.

Amplitude limiter [12]

The internal command value is limited to approx. $\pm 110 \%$ of the nominal range.

Oscillator [14]

The oscillator creates the control signal for the inductive position transducer.

Demodulator [15]

The demodulator supplies the actual value signal of the valve spool position from the position transducer signal. $100 \% \xlongequal{=} 10 \mathrm{~V}$

Position controller [17]

The position controller is optimized in a valve-specific manner.

Power output stage [18]

The power output stage creates the clocked solenoid current for the proportional valve. The solenoid current is limited to 2.5 A to 2.8 A per output. The output stage outputs are short-circuit-proof. The output stages are deenergized in case of an internal fault signal or if they have not been enabled..

Fault recognition [19]

The position transducer cable is monitored for cable break and short-circuits on the primary side as well as for over-currents at the output stage.
[] = Attribution to the block diagrams on pages 4 and 5

Block diagram/pin assignment, option T1

$\begin{array}{ll}12 & \text { Amplitude limiter } \\ 13 & \text { Command value output } \\ 14 & \text { Oscillator } \\ 15 & \text { Demodulator } \\ 16 & \text { Actual value output }\end{array}$

Command value summation
Command value inversion
Enable function

11 Characteristic curve generator

Block diagram/pin assignment, option T5

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	$24 \mathrm{VDC}+40$ \% - 20 \%
Operating range:		
Upper limit value	$U_{B}(t)_{\text {max }}$	35 V
Lower limit value	$U_{B}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	< 24 VA
Current consumption	1	$<2 \mathrm{~A}$
Fuse	$I_{\text {s }}$	2 A medium time-lag, exchangeable
Inputs, analog		
Command values 1 to 4 (potentiometer inputs)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$ (M0 is reference)
Command value 5 (differential input)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>50 \mathrm{k} \Omega$
Command value 6 (current input)	$l_{\text {e }}$	$4 \ldots 20 \mathrm{~mA}$, load $R_{\mathrm{B}}=100 \Omega$
External ramp time	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}=10 \mathrm{k} \Omega$ (internally increased to $+15 \mathrm{~V}, \mathrm{M} 0$ is reference)
Inputs, digital		
Command value call-ups, Command value inversion, Enable, Ramp call-ups (option T5), 4-quadrant operation (option T5)	U	$\begin{aligned} & 8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow \mathrm{ON}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \\ & 0 \ldots 6.5 \mathrm{~V} \rightarrow \mathrm{OFF}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \end{aligned}$
Setting ranges		
Zero adjustment (potentiometer "Zw")		± 30 \%
Command values (potentiometers "w1" to "w4")		$0 . .110$ \%
Ramp times (potentiometer "t1" to "t5")		$20 \mathrm{~ms} \ldots 5 \mathrm{~s}$, switchable to $0.2 \ldots 50 \mathrm{~s}$
Step level (potentiometer "S+" and "S-")		$0 . . .50 \%$
Amplitude attenuator (potentiometer "G+" and "G-")		$0 \ldots 110 \%$ (applies to the step level setting of 0 \%)
Outputs		
Command value signal	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Actual value signal	U	$\pm 2,5 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Measurement signal (option 5)	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Ready for operation	U	$>16 \mathrm{~V}, 50 \mathrm{~mA}$ (in case of a fault: $\mathrm{U}<1 \mathrm{~V}, R_{\mathrm{i}}=10 \mathrm{k} \Omega$)
Regulated voltages	\cup	$\pm 10 \mathrm{~V} \pm 2$ \%, 25 mA , short-circuit-proof
Power output stage	1	$0 \ldots 2.5 \mathrm{~A}$, short-circuit-proof, clocked with approx. 5 kHz
Oscillator	U	$\pm 5 \mathrm{~V}_{\text {SS }}$ per output, 10 mA
	f	$5.6 \mathrm{kHz} \pm 10$ \%
Measuring sockets		
Command value "w"		$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Actual value signal "x"		$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Ramp time "t"		See description on page 3
Socket "v" (option T5)		See description on page 3 and table on page 9
Type of connection		48-pin male multipoint connector, DIN 41612, design F
Card dimensions		Euro card $100 \times 160 \mathrm{~mm}$, DIN 41494
Admissible operating temperature range	ง	$0 \ldots 50{ }^{\circ} \mathrm{C}$
Storage temperature range	ง	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Weight	m	0.17 kg (net)

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30119-U.

Display/adjustment elements, option T1

Inversion	$\mathrm{J1}$
Inverting	\square
Not inverting	00

Ramp function	J2
Off	\square
On	$\boxed{ }$

Ramp time	J3
$0.2 \ldots 50 \mathrm{sec}$.	\square
$0.02 \ldots 5 \mathrm{sec}$.	\bullet

Step function	J4
Off	\bullet
On	\square

LED displays:

() Ready for operation (green)

G Enable (yellow)
-1 External inverting

Measuring sockets:

$\mathbf{x , w , t} \mathbf{t}$	Measurement signal (see page 6)
\perp	Measurement zero

Potentiometers (some with LED display):

Zw	Zero point calibration	Adjustable on the board:	
w1	Command value 1	Gw+	Amplitude attenuator for positive command values
w2	Command value 2	Gw-	Amplitude attenuator for negative command values
w3	Command value 3	S+	Step level for positive direction
w4	Command value 4	S-	Step level for negative direction

t Ramp time

\bullet	$=$ Factory setting of the jumpers
\square	$=$ Jumper closed
$\square 0$	$=$ Jumper open

Display/adjustment elements, option T5

Inversion	J1
Inverting	\square
Not inverting	$\bullet 0$

Ramp function	J2
Off	\square
On	$\bullet 0$

Ramp time	J3
$0.2 \ldots 50 \mathrm{sec}$.	\square
$0.02 \ldots 5 \mathrm{sec}$.	\bullet

LED displays:

(:) Ready for operation (green)
G Enable (yellow)

\bullet	$=$ Factory setting of the jumpers
\square	$=$ Jumper closed
$\square 0$	$=$ Jumper open

-1 External inverting
4Q 4-quadrant operation
T Reserved

Measuring sockets:

$\mathbf{x , w , v}$	Measurement signal (see page 6)
\perp	Measurement zero

Potentiometers (some with LED display):

Zw	Zero point calibration	Adjustable on the board:
w1	Command value 1	Gw+
w2	Amplitude attenuator for positive command values	
w3	Command value 3	Gw-

t Ramp time
The warranty expires if the sealed potentiometer is adjusted.

Display/adjustment elements, option T5 (continued)

Measuring socket " v "

Signal designation	Measuring point selector switch	Measurement signal "v"
Internal command value	0	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 1	1	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 2	2	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 3	3	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 4	4	$\pm 100 \% \wedge \pm 10 \mathrm{~V}$
Zero point offset "Zw"	5	$\pm 30 \% \triangleq \pm 3 \mathrm{~V}$
Composite signal of the command values	6	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Ramp output signal	7	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Zero point offset "Zx"	8	$\pm 30 \% \xlongequal{\text { ¢ }}$ +10 V
Not connected	9	
Ramp time "t1"	A	$10 \mathrm{mV} \ldots 10 \mathrm{~V}^{1)}$
Ramp time "t2"	B	$10 \mathrm{mV} \mathrm{..} .10 \mathrm{~V}^{1)}$
Ramp time "t3"	C	$10 \mathrm{mV} . . .10 \mathrm{~V}^{1)}$
Ramp time "t4"	D	$10 \mathrm{mV} \ldots 10 \mathrm{~V}^{1)}$
Ramp time "t5"	E	$10 \mathrm{mV} \ldots 10 \mathrm{~V}^{1)}$
Current ramp time "t"	F	10 mV ... $10 \mathrm{~V}^{1)}$

[^18]
Dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- For more information, refer to document 30119-B.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification.
It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Group

Electrical amplifier for controlling DC motoractuated pressure control valves with electrical feedback

Type VT-VRM1-1

Component series 1 X

Table of contents

Content

Features
Ordering code
Technical data
Block circuit diagram
Electrical connection
Installation and connection

Features

The amplifier card is used for controlling DC motor-actuated pressure control valves with electrical feedback (DBGx...1X, DRG...1X).

- PWM output stage with 4-quadrant operation
- Rotary angle controller of actual value potentiometer
- Differential input for command value provision
- Enable circuit
- Command value inversion
- DC/DC converter
- Offset adjustment for command value
- Command value attenuation
- Ramp generator
- LED indicator lamps:
power
H2 for maximum current indication
H3 for fault and missing enable

Ordering code

Type VT-VRM1-1-1X

Material number: R900067617

Accessories (can be ordered separately)

Card holder:

- VT 3002-1-2X/15H, Material number: R900209648

Power supply unit:

- VT-NE30-2X, Material number: R901082348

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	$\begin{aligned} & 24 \text { VDC - } 20 \%+40 \% \\ & \text { Residual ripple content: } 8 \% \end{aligned}$
Current consumption	$\begin{array}{r} I \text { (idle) } \\ I_{\text {max }} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 0.2 \mathrm{~A} \\ 6 \mathrm{~A} \\ \hline \end{array}$
Inputs		
Command value	U	0 V to +10 V ($\left.\mathrm{R}_{\mathrm{i}}>100 \mathrm{k} \Omega\right)$
Actual value	\cup	0 V to +15 V
Enable	U	$\begin{array}{\|l\|} \hline \log 0: 0 \text { to } 3 \mathrm{~V} \\ \log 1: 10 \text { to } 30 \mathrm{~V} \\ \hline \end{array}$
Invert (command value inversion)	U	$\begin{array}{\|l\|} \hline \log 0: 0 \text { to } 3 \mathrm{~V} \\ \log 1: 10 \text { to } 30 \mathrm{~V} \end{array}$
Adjustment ranges		
Offset adjustment for command value		0 to 50%
Command value attenuation		20 to 100%
Ramp time	t	40 ms to 1.6 s

Note:
Valve can be overcontrolled.
Before adjusting the offset, turn the command value attenuator to minimum and apply a command value of 0 V !

Outputs		
Motor connection - Maximum output current - Minimum motor inductivity	$\begin{aligned} & I_{\text {max }} \\ & L_{\text {min }} \end{aligned}$	$\begin{aligned} & \hline 8 \mathrm{~A} \\ & 1 \mathrm{mH} \end{aligned}$
Auxiliary voltage for potentiometer connection	U	$15 \mathrm{~V}, 30 \mathrm{~mA}$
Type of connection		15-pin male connector, DIN 41615, form H
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions		
Height		3 HE
Width soldering side		3 TE
Width component side		$5 \mathrm{TE}(1 \mathrm{TE}=5,08 \mathrm{~mm})$
Permissible ambient temperature	T	0° to $45^{\circ} \mathrm{C}$ (temperature of output stages is monitored)
Weight	m	0.4 kg

Technical data (for applications outside these parameters, please consult us!)

Basic settings of potentiometers

Item	Comp. names	Description (lettering on printed- circuit board)	Setting	Front panel designation
1	P1	$\mathrm{n}_{\text {max }}$ (command value attenuator)	Right-hand limit stop (maximum)	G_{w}
2	P2	$\mathrm{t}_{\text {int }}$ (ramp time)	Left-hand limit stop (minimum)	t
3	P3	$\mathrm{n}_{\text {offs }}$ (zero point)	Right-hand limit stop (minimum)	Z_{x}
4	P4	X_{p} (controller adjustment)	Right-hand limit stop	
5	P5	$\mathrm{I}_{\mathrm{X}} \mathrm{R}$	Left-hand limit stop	
6	P6	I_{A} (current limitation)	Right-hand limit stop (no current limita- tion)	

Jumper settings

The jumpers are firmly pre-set and must not be changed. This information is provided purely for checking purposes.

Jumper	Factory setting	Remark
J1	Open	Not available
J2	Plugged between jumper pins 2 and 3	Differential input activated
J3	Plugged	Controller and output stage enable
J4	Plugged between jumper pins 1 and 2	Position controller activated
J5	Open	Armature voltage regulation deactivated

Electrical connection

Connector pinout of amplifier card			Connector pinout of valve	
Pin	Designation	Value	DBG...1X	DRG...1X
4	Enable OFF	$0 \mathrm{~V}<\mathrm{U}<3 \mathrm{~V}$		
	ON	$10 \mathrm{~V}<\mathrm{U}<30 \mathrm{~V}$		
6	Invert OFF	$0 \mathrm{~V}<\mathrm{U}<3 \mathrm{~V}$		
	ON	$10 \mathrm{~V}<\mathrm{U}<30 \mathrm{~V}$		
8	+15 V		3	3
10	-command value	Reference potential	$\stackrel{1}{=}$	$\stackrel{1}{=}$
12	+command value	$0 \mathrm{~V}<\mathrm{U}<10 \mathrm{~V}$		
14	M0/0 V		1	1
16	+actual value		2	2
18	$\mathrm{I}_{\text {M max }}$	n.c.		
20		n.c.		
22	$-\mathrm{U}_{\text {Motor }}$		5	5
24	$+\mathrm{U}_{\text {Motor }}$		6	6
26		n.c.		
28	$+\mathrm{U}_{\text {B }}$	24 VDC		
30	L0/ground	0 V		
32	GND	GND/ground		

Installation and connection

- Connection according to block circuit diagram and table above Incorrect connection (polarity reversal) can destroy the device !
- Shield command value, control and actual value cables / connect shield on one end - only to Pin 14
- Shield motor cable / connect shield on one end to system ground and to Pin 32
- Connect L0 on power supply unit to system ground

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Digital valve amplifier for valve types
 4WRE 6 ..., component series 2X 4WRE 10 ..., component series 2 X

RE 30126/09.07
1/10
Replaces: 09.05

Typ VT-VRPD-2

Component series 2X

Table of contents

Content

Page
Features
1
Ordering code
Functional description
2
Block circuit diagram
Technical data
Pin assignment of multi-point connector
Pin assignment of D-SUB Buchse
Unit dimensions
Engineering / maintenance notes / supplementary information

Features

- Suitable for controlling proportional valves with electrical position feedback, types:
4WRE 6, component series 2X
4WRE 10, component series 2 X
- User data can be exactly reproduced and are protected against unintended or unauthorized changes
- Use of a powerful microcontroller

7 - Valve selection using operating software BODAC
8 - Command value input, optional as voltage or current interface
8 - Voltage input as differential input
9 - Command value input with variable input adjustment

- Ramp generator
- Digital inputs for calling pre-set command value parameters
- Enable input and fault output
- Switched-mode power supply unit for internal supply voltages
- Freely configurable measuring sockets X2 (X1 positively assigned to actual valve value)
- Configuration and parameterization via serial interface using PC software BODAC (CD:SYS-HACD-BODAC-01) Connection cable for BODAC
- Up to 32 valve amplifiers can be interconnected via local bus for parameterization and diagnostics purposes

Ordering code

Standard types	Material number
VT-VRPD-2-2X/V0/0-0-1	R901066987

Required accessories:

- PC program BODAC: Ordering code of CD: SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/hacd
- Interface cable: Cable set VT-HACD-1X/03.0/ HACD-PC (R900776897) or commercial 1:1 cable

Suitable card holders:

- 19" racks VT 19101, VT 19102, VT 19103 and VT 19110 (see RE 29768)
- Enclosed card holder VT 12302 (see RE 30103) (standard), Mat. no. R900784153
- Open card holder VT 3002-2X/64G (see RE 29928), Mat. no. R900991843 (only for installation into control cabinet!)
- Connection adapter VT 10812-2X/64G (see RE 30105), Mat. no. R900713826

Functional description

The amplifier card is designed as double-sided printed-circuit board in Euro-format $100 \times 160 \mathrm{~mm}$ with daughterboard.
A microcontroller is the central unit of the amplifier. It controls the entire sequence and implements closed-loop position control. Data for the configuration, command value feedforward, and parameters are saved in a non-volatile FLASH.
Four binary-coded, digital inputs are used for calling up parameter sets (command values) from the memory, in which a maximum of 16 sets can be saved. A call-up activates the command value for the valve spool position with the associated ramp times.
Further control inputs have the following function:
"Command valid": Enable of the parameter set addressed by the current call-up (H-active)
"Enable": Activation of outputs (fault message acknowledgement by Low \rightarrow High edge)
The amplifier card includes a controller for the spool position of a proportional valve.
The command value can be provided via digital command value call-ups [5] and/or via analog inputs [1]. Analog input Al4 (b14/ b16) must be used for command values of $\pm 10 \mathrm{~V}$, analog input Al6 (b22/b24) for command values of 4 to 20 mA .
Command values of 0 to $+10 \mathrm{~V}(12 \ldots 20 \mathrm{~mA})$ control solenoid B.
Command values of 0 to $-10 \mathrm{~V}(4 \ldots 12 \mathrm{~mA})$ control solenoid A .
The digital command value is added to the analog command value with the correct sign in accordance with the set call-up.
The signal level of the command value inputs can be varied by means of the software.
Apart from the possibility of generating ramps internally, it is possible to influence "up" and "down" ramps of external signals with correct sums and signs via analog inputs Al2 (b6/b9) and Al5 (b18/b20).
For 4WRE valves, a step function generator [9] is provided by the software to realize an overlap jump when a spool with overlap is selected. The command value sum is fed to the controller [12].
The actual valve value (b26) is generated by means of an oscillator/demodulator stage from the valve position measuring system and also fed to the controller [12]. The controller output controls the current-regulated output stages.

Enable and fault messages

The closed-loop control is activated by a H -level at the enable input. If no command value call-up is active, digital call-up 0 is set.
A fault logic [14] recognizes control deviations, a cable break of actual value cables and of the command value input for 4 to 20 mA as well as an inactive enable input. In the case of a fault, a fault message is output to (d22) by a Low signal and signaled visually by LED "OK" (OK goes out) on the front panel. It is possible to configure the enable so that an inactive enable input is not signaled as a fault.

Parameterization and diagnosis

The selection of the valve to be controlled and the selection and configuration of the command value input, the ramp generator, the enable input, and the setting of the command value call-up parameters are made via the serial interface [6] at the front D-SUB socket [7]. Up to 32 valve amplifiers can be interconnected via the local bus. A bus address is assigned to each valve amplifier via BODAC. Re-plugging of the serial interface cable is not required.
For further information, see RE 30126-01-B.

Digital outputs

DO 1	(d20)	Solenoid A active
DO 2	$(\mathrm{d} 26)$	Solenoid B active
DO 3	$($ z22 $)$	System deviation \geq window
DO 4	$($ z24 $)$	Freely configurable
DO 5	$($ z26 $)$	Freely configurable
DO 6	$($ z28)	Freely configurable
DO 7	(f2)	Not assigned

Indicator elements and measuring sockets

The front panel of the command value card is provided with measuring sockets for the two analog outputs.
Measuring socket " X 1 ": Actual valve value (b26)
Measuring socket "X2": Valve command value (default)
Measuring socket " \perp ": Reference potential (corresponds to connection z32)

The following states are signaled by LEDs:
LED "®" (green):
LED "OK" (green):
LEDs "I1"..." 14 " (yellow):
Enable active

LED "I6" (yellow) Command valid
OK ready for operation

LED " 15,17 " (yellow) Not assigned
[] = Cross-reference to block circuit diagram on page 4

Block circuit diagram

Technical data (for applications outside these parameters, please consult us!)
Valve amplifier VT-VRPD-2-2X/V0/0-0-1

Note:

For details regarding environment simulation testing in the fields of EMC (electromagnetic compatibility), climate and mechanical stress, see RE 30126-U (declaration on environmental compatibility).

Technical data (for applications outside these parameters, please consult us)

Solenoid		
Current consumption per solenoid	$I_{\text {max }}$	2.5 A
Solenoid coil resistance		
Cold value at $20^{\circ} \mathrm{C}$	R	2.7Ω
Max. warm value	R	4.5Ω
Electrical connection		Plug-in connection to DIN EN 175301-803
Type of protection to EN 60529		IP 65 with mating connector correctly mounted and locked
Position transducer		
Carrier frequency	f	5 kHz
Coil resistance (at $20^{\circ} \mathrm{C}$):		
Between connections 1 and 2	R	113Ω
Between connections 3 and 4	R	101Ω
Electrical connection		Plug-in connection to DIN 43650-BFZ-Pg9
Type of protection to EN 60529		IP 65 with mating connector correctly mounted and locked

Pin assignment of multi-point connector

Row d		
Pin	Code	Description
2	DI 1	Binary 1
4	DI 2	Binary 2
6	DI 3	Binary 4
8	DI 4	Binary 8
10	DI 5	n. c.
12	DI 6	Command valid
14	DI 7	n. c.
16	DI 8	n. c.
18	DI 9	Enable
20	DO 1	Solenoid A active
22	OK	OK output
24	Data+	Local bus
26	DO 2	Solenoid B active
28	Data-	Local bus
30	AO 1	Valve command value
32	AO 2	n. c.

Row b		
Pin	Code	Description
2	n. c.	n. c.
4	n. c.	n. c.
6	Al $2+$	Ramp + (U)+
8	Al $2-$	Ramp + (U)-
10	n. c.	n. c.
12	n. c.	n. c.
14	Al 4+	Command value (U)+
16	Al 4-	Command value (U)-
18	Al 5+	Ramp - (U)+
20	Al 5-	Ramp - (U)-
22	Al $6+$	Command value (I)+
24	Al 6-	Command value (I)-
26	AO 3	Actual valve value $\pm 10 \mathrm{~V}$
28	AGND	Analog GND
30	REF-	-10 V
32	REF+	+10 V

Row \mathbf{z}		
Pin	Code	Description
2	MA +	Solenoid A+
4	MA-	Solenoid A-
6	MB +	Solenoid B+
8	MB-	Solenoid B-
10	Shield	Shield
12	L 1O-	LVDT supply -, Pin 2
14	L 11-	LVDT signal -, Pin 4
16	L 11+	LVDT signal +, Pin 3
18	L 1O+	LVDT supply +, Pin 1
20	System	System ground
ground		
22	DO 3	System deviation \geq window
24	DO 4	Freely configurable
26	DO 5	Freely configurable
28	DO 6	Freely configurable
30	UB	Supply voltage
32	LO	Ground

Row f		
Pin	Code	Description
2	DO 7	n. c.
4	n. c.	n. c.
6	n. c.	n. c.
8	n. c.	n. c.
10	n. c.	n. c.
12	n. c.	n. c.
14	n. c.	n. c.
16	n. c.	n. c.
18	n. c.	n. c.
20	n. c.	n. c.
22	n. c.	n. c.
24	n. c.	n. c.
26	n. c.	n. c.
28	n. c.	n. c.
30	n. c.	n. c.
32	n. c.	n. c.

Pin assignment of D-SUB socket

RS 232

Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

Product documentation for valve amplifier VT-VRPD-2-2X/V0/0-0-1

RE 30126

Technical data sheet (the present document)

- The amplifier card may only be plugged or withdrawn when disconnected from the power supply!
- Do not use plugs with free-wheeling diodes or LED indicator lamps for connecting the solenoids!
- Measurements on the card may only be taken using instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- Route command value cables separately and always shield them; connect shield to connection z10 on the card side and leave the other end open (risk of earth loops)!
- For solenoid cables up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$. In the case of greater lengths, please consult us! Recommendation: Also shield solenoid cables!
- Use highly flexible Cu cables ($\mathrm{min} .2 .5 \mathrm{~mm}^{2}$) for connecting the system ground!

The system ground is an integral part of EMC protection of the valve amplifier. It is intended to discharge interference that is transported via the data and supply cables. This is only possible, when the system ground itself does not inject interference into the command value card.

- The distance to aerial lines, radio sources and radar equipment must be at least 1 m !
- Do not lay solenoid and signal cables near power cables!
- Due to the charging current of the smoothing capacitor on the card, back-up fuses must have slow-blowing characteristics!
- Caution: When the differential input is used, both inputs must always be switched on or off simultaneously.

Note: Electrical signals brought out via control electronics (e.g. signal "OK") must not be used for switching safety-relevant machine functions!
(See also European standard "safety requirements for fluid power systems and components - hydraulics", EN 982)

Notes

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49$ (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de

C This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Rexroth

Bosch Group

Analog amplifier module

Type VT-MSPA1-30, VT-MSPA1-150

Component series 1 X

Table of contents

Contents

Features
Page
1
Ordering code
Functional description
Block diagram
Terminal assignment / device view
Technical data
Output characteristic curve
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling direct operated proportional pressure valves:
- DBE(M) 30-3X
- DRE(M) 30-4X
- Inverse-polarity protection of the operating voltage
- Differential input for command value voltage +10 V
- Ramp generator up and down can be set separately
- Zero point potentiometer
- 1 command value attenuator
- Characteristic curve generator
- Synchronized power output stage
- Output short-circuit-proof
- LED display:
- Ready for operation (green)
- Measuring sockets for: - Pressure command value
- Actual current value
- Dither generator with fixed frequency

Ordering code

Functional description

Analog amplifier for controlling pressure valves without electric return. The modular design allows for simple top hat rail assembly as is usual in control cabinets.

Command value input: 4

The module amplifier is controlled by means of a standard command value signal 0 to +10 V . By means of the zero point trimmer (Zw) (6), a zero point offset can be corrected.

Ramp generator: 5

In the ramp generator (5), the actuating variable rise is limited. Using the trimmer " $\mathrm{<}$ " (7), the time for the increasing command value signal is set and using trimmer " $t>$ " (8), the time for the decreasing command value voltage is set. The adjustable time is contained in the technical data.

Characteristic curve generator: 10
Using the trimmer "Gw" (9), the rated current for the solenoid is set. In the characteristic curve generator (10), the command value signal is changed so that a linear command value current characteristic curve results.

Clock generator: 12
In the clock generator (12), a fixed frequency for the output stage is generated.

Power output stage: 11-14
Using the actuating variable coming from the characteristic curve generator (10) and the clock frequency, the power output stage generates a PWM signal that is fed into the solenoid. The solenoid current is recorded and in the current controller (11) compared with the actuating variable and the difference is compensated.

Fault recognition: 15

Monitors the solenoid lines with regard to cable break and short circuit as well as overcurrent of the output stage. If there is an error, the green Ready for operation display goes out.

Terminal assignment / device view

Terminal assignment

Terminal	
1	$+U_{\mathrm{B}}$
2	Ground
3	$-U_{\text {command }}$
4	Solenoid +
5	Solenoid -
6	$+U_{\text {command }}$

Device view

Potentiometer:	"Gw"	Pressure command value
	"Zw"	Zero point
	"t < "	Ramp time up
	"t >"	Ramp time down
Sockets:	"w"	Pressure command value
	"I"	Actual current value
	" ${ }^{\prime \prime}$	Measurement null

Technical Data (For applications outside these parameters, please consult us!)

		VT-MSPA1-30	VT-MSPA1-150
Operating voltage	U_{B}	24 VDC + 40 \% -10 \%	
Operating range:			
- Upper limit value	$u_{B}(t)_{\text {max }}$	35 V	
- Lower limit value	$u_{B}(t)_{\text {min }}$	21 V	
Power consumption	$P_{\text {max }}$	$<25 \mathrm{VA}$	
Current consumption	$I_{\text {max }}$	$<1 \mathrm{~A}$	
Fuse	$I_{\text {s }}$	Electronic overload protection and SMD fuse (soldered in)	
Inputs			
- Command value (differential input)	$U_{\text {command }}$	0 to $+10 \mathrm{~V} ; R_{\mathrm{e}}=100 \mathrm{k} \Omega$	
Outputs			
- Bias current (factory setting)	I_{v}	$\begin{gathered} 100 \mathrm{~mA} \\ 800 \mathrm{~mA} ; R_{20}=19.5 \Omega \\ 200 \mathrm{~Hz} \end{gathered}$	$\begin{gathered} 200 \mathrm{~mA} \\ 700 \mathrm{~mA} ; R_{20}=19.5 \Omega \\ 100 \mathrm{~Hz} \pm 10 \% \end{gathered}$
- Solenoid current / resistance	$I_{\text {max }}$		
- Frequency	f		
Setting ranges			
GW: Solenoid current	I	$100 \mathrm{~mA} . . .800 \mathrm{~mA}$	200 mA ... 700 mA
ZW: Zero point		± 25 \%	± 25 \%
$\left.\begin{array}{l} t>: \\ t<: \end{array}\right\} \text { Ramp }$	t	$60 \mathrm{~ms} . . .5 \mathrm{~s}$	$60 \mathrm{~ms} . . .5 \mathrm{~s}$
Measuring sockets			
- Command value "w"	U	0 to 10 V	
- Actual current value "I"	U	$1 \mathrm{mV} \triangleq 1 \mathrm{~mA}$ solenoid current	
Type of connection		6 screw terminals	
Mounting type		Top hat rail TH 35-7.5 according to EN 60715	
Protection class according to EN 60529		IP 20	
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$25 \times 79 \times 85.5 \mathrm{~mm}$	
Admissible operating temperature range	$ง$	0 to $+50{ }^{\circ} \mathrm{C}$	
Storage temperature range	$ง$	-25 to $+85{ }^{\circ} \mathrm{C}$	
Weight	m	0.15 kg	

Important:

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see 30223-U (declaration on environmental compatibility).

VT-MSPA1-30

VT-MSPA1-150

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier module may only be wired when de-energized!
- The distance to radios must be sufficient (>> 1 m)!
- Screen command value lines, do not lay them close to power cables, screen solenoid lines!
- Do not use free-wheeling diodes in the solenoid lines!
- With a strongly fluctuating operating voltage, it may in the individual case be necessary to use an external smoothing capacitor with a capacity of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see RE 30750); sufficient for up to 3 amplifier modules.

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Electric amplifier for flow control with proportional valves

RE 29955/09.11
Replaces: 09.04

Type VT 5035

Component series 1 X

Table of contents
Content
Page
Features
1
Ordering code
Functional description
Block diagram / pinout
Technical data
Display / adjustment elements
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for the flow control of the axial piston variable displacement pumps A4VSO and A4VSG with EO1 or EO2 control or A4CSG with EO2 control (see data sheets 92050, 92076 and 92100).
- Differential input
- Enable input with LED display
- "Ready for operation" message by LED display
- Ramp time adjustable by means of the potentiometer
- Four command values adjustable by means of the potentiometer, call-ups indicated by LEDs
- Controller for the pump swivel angle
- Two synchronized power output stages
- Oscillator and demodulator for inductive position measurement with cable break detection
- Reverse polarity protection for the voltage supply

Ordering code

Accessories (not included in the scope of delivery)
Card holder:
Type VT 3002-1-2X/32D, see data sheet 29928

Functional description

The printed circuit board is used for the electric flow control of an AV4VSO and AV4SG with EO1 and EO2 control or an AVCSG with EO2 control.
The amplifier controls the proportional valve of the swivel angle actuating cylinder and controls its position analogously to the specified command value. The swivel angle position is recorded as actual value.
Using the command value inputs 1 to 4 , command values can be retrieved [1] by actuating the related relays (K1 to K4). The command value voltage is either specified directly, by the regulated voltages $\pm 9 \mathrm{~V}$ of the internal power supply [10] or via an external command value potentiometer. For these inputs, $\pm 9 \mathrm{~V} \triangleq 100 \%^{1}$. If these four command value inputs are directly connected to the regulated voltages $\pm 9 \mathrm{~V}$, four different command values can be set at the "w1" to "w4" potentiometers. When external command value potentiometers are used at these inputs, the internal potentiometers function as attenuators or limiters unless they have been set to the maximum.

Inputs

Control solenoid "b"

Inputs

Control solenoid "a"

Inputs

Control solenoids "a" + "b"

External command value potentiometers

The LEDs "H1" to "H4" indicate which command value is just being called. If more than one command value is called at a time, the input with the highest number will take priority.
Example: If command value 1 and command value 3 are activated simultaneously, command value 3 will take effect.
Another output of the card supplies a supply voltage for the command value call-ups which can be switched from +9 V to -9 V by means of the relay $\mathrm{K} 6{ }^{11}$.
All relays on the card are switched with 24 VDC (smoothened). The command value input 5 is a differential input (0 to $\pm 10 \mathrm{~V}$). If the command value is specified by external electronics with a different reference potential, this input has to be used. When disconnecting or connecting the command value voltage, it has to be ensured that both signal lines are in each case separated from or connected with the input.
Before they are forwarded, all command values will be added up according to their absolute value and their sign [3].
The down-stream ramp generator [4] generates a rampshaped output signal from a given step-shaped input signal. The time constant of the output signal can be adjusted using the "t" potentiometer. The specified ramp time refers to a command value step of 100% and may - depending on the jumper setting (J5, J6), be approx. 1 s or 5 s . If a command value step of less than 100% is switched to the ramp generator input, the ramp time will be correspondingly shorter.

Functional description

External time potentiometer and ramp "Off"

Ramp "controllable"

Ramp "On/Off"

Notice:

When using an external time potentiometer, the internal potentiometer for the ramp time must be set to maximum. The maximum ramp time is reduced as the resistance value of the external potentiometer is switched in parallel to that of the internal one (ca. $500 \mathrm{k} \Omega$).
By switching the relay K5 or by an external bridge, the ramp time is set to its minimum value (ca. 30 ms).
The output signal of the ramp generator [4] is the swivel angle command value and is supplied to the PID controller [5], the " w " measurement socket on the front panel of the card and port 4a (command value after ramp/external limiting potential). A voltage of -6 V at the " w " command value measurement socket corresponds to a command value of $+100 \%$.
The PID controller has been especially optimized for the specified pump types. The power output stages are controlled depending on the difference between swivel angle command value and actual swivel angle value. A positive command value signal at the amplifier input actuates the output stage for solenoid "a", a negative command value signal the output stage for solenoid "b".
The inductive position transducer [11] detects the actual swivel angle value. The AC voltage signal of the position transducer is converted in the oscillator/demodulator [9] and returned to the PID controller as actual swivel angle value.
The zero point of the position transducer (actual value zero point) can be adjusted by means of the " $Z \times$ " potentiometer (on the printed circuit board). The amplification of the actual swivel angle value has been calibrated in the factory and must not be changed ($\pm 6 \mathrm{~V} \xlongequal{\wedge}$ max. swivel angle position).
With a signal of $>8.5 \mathrm{~V}$ at the enable input, the output stages are enabled (indication by the yellow "H11" LED on the front plate). By setting jumper J7, the output stages are permanently enabled irrespective of the enable input status. The enable input will then be ineffective.

In case of failure-free operation, the "H12" LED (ready for operation) is illuminated; in detail if:

- The enable signal is applied,
- The internal $\pm 9 \mathrm{~V}$ voltage supply functions (amplitude and symmetry),
- No short-circuit of the solenoid lines and
- No cable break

In the position transducer lines exists.
In case of failure, the two output stages are immediately de-energized, the controller is switched off and the "Ready for operation" message is reset. After remedy of the failure, the card is immediately functional again; the "H12" LED lights up again.
${ }^{1)}$ The reference potential for the command values 1 to 4 is M0 (measurement zero).
[] = Assignment to the block diagram

Technical data (For applications outside these parameters, please consult us.)

Operating voltage	U_{B}	24 VDC + $40 \%-5 \%$
Operating range:		
- Upper limit value	$u_{B}()^{\text {max }}$ m	35 V including superimposed residual ripple
- Lower limit value	$u_{B}(t)_{\text {min }}$	22 V
Power consumption	$P_{\text {S }}$	< 50 VA
Current consumption	1	$<2 \mathrm{~A}$
Fuse	$I_{\text {S }}$	2.5 A slow-blow
Inputs:		
- Command values 1 to 4	$U_{\text {e }}$	$\pm 9 \mathrm{~V}$ (reference potential is M 0)
- Command value 5	$U_{\text {e }}$	0 to $\pm 10 \mathrm{~V}$
- Enable		
- Active	$U_{\text {F }}$	$>8.5 \mathrm{~V}$
- Not active	U_{F}	$<6.5 \mathrm{~V}$
Relay data:		
- Nominal voltage	U	Operating voltage U_{B}
- Response voltage	U	16.8 V
- Step-back voltage	\cup	2.4 V
- Coil resistance	R	2150Ω
Ramp time (setting range)	t	30 ms to approx. 1 s or 5 s (in each case $\pm 20 \%$)
Outputs:		
- Output stage		
- Solenoid current/resistance	$I_{\text {max }}$	$1.8 \mathrm{~A} \pm 20 \% ; R_{(20)}=5.4 \Omega$
- Clock frequency	f	Self-clocking up to ca. 1.5 kHz
- Driver for the inductive position transducer		
- Oscillator frequency	f	$2.5 \mathrm{kHz} \pm 10 \%$
- Max. load capacity	1	30 mA
- Voltage amplitude (U_{ss})	$U_{\text {a }}$	5 V per output
- Regulated voltage	U	$\pm 9 \mathrm{~V} \pm 1 \%$ \% 25 mA externally loadable
- Measuring sockets		
- Swivel angle command value "w"	$U_{\text {w }}$	0 to $\pm 6 \mathrm{~V}(-6 \mathrm{~V} \xlongequal{\wedge}+100 \% ;+6 \mathrm{~V} \triangleq-100 \%) ; R_{\mathrm{i}}=100 \Omega$
- Actual swivel angle value "x"	U_{x}	0 to $\pm 6 \mathrm{~V}(+6 \mathrm{~V} \triangleq+100 \% ;-6 \mathrm{~V} \triangleq-100 \%) ; R_{\mathrm{i}}=100 \Omega$
Type of connection		32-pole male multipoint connector, DIN 41612, design D
Card dimensions		European card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front plate dimensions:		
- Height		$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width soldering side		1 TE (5.08 mm)
- Width component side		7 TE
Admissible operating temperature range	\bigcirc	0 to $50{ }^{\circ} \mathrm{C}$
Storage temperature range	$ง$	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0.15 kg

Display / adjustment elements

LED display "Enable" (yellow)
LED display "Ready for operation" (green)
w1/H1 Command value 1 with LED display
w2/H2 Command value 2 with LED display
w3/H3 Command value 3 with LED display
w4/H4 Command value 4 with LED display
t Ramp time (in the condition as supplied set to the minimum value)
x Measuring sockets for actual swivel angle value
w Measuring sockets for swivel angle command value

Zx: Zero point position transducer

Gx:
Amplification of the actual swivel angle value (calibrated in the factory) approx. 1 s or 5 s

H10 - red LED "Cable break"

Meaning of the jumpers on the card for the settings
(Plate on the back side of the front plate)

Notice:

The circles (\bigcirc) serve the marking of the settings made by the customer.
The condition as supplied is marked with "•".

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- No plug-in connectors with free-wheeling diodes or LED indicators must be used for solenoid connection.
- Only carry out measurements at the card using instruments $R_{\mathrm{i}}>100 \mathrm{k} \Omega$.
- Measurement zero (M 0) is increased by +9 V as compared to the operating voltage and not potentially isolated, i.e. -9 V regulated voltage $\triangleq 0 \mathrm{~V}$ operating voltage. Thus, do not connect measurement zero (M0) to 0 V operating voltage.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents).
- For switching the card relays, only switching contacts with a load capacity of approx. $40 \mathrm{~V}, 50 \mathrm{~mA}$ may be used. In case of external control, the residual ripple of the control voltage may maximally be 10%.
- Always shield command value lines and lines of the inductive position transducer separately; connect shielding to 0 V operating voltage on the card-side, other side open (risk of ground loops).
Recommendation: Also shield the solenoid conductors.
For solenoid lines up to 50 m in length, use cables with a wire cross-section of $1.5 \mathrm{~mm}^{2}$. With greater lengths, please contact us.
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- Do not lay solenoid and signal lines near power cables.
- The charging current of the smoothing capacitor on the card requires the pre-fuses to be of a slow-blowing nature.
- Do not connect the ground sign at the inductive position transducer with the ground.
(Prerequisite for the compatibility with previous component series.)

Notices:

- If the differential input is used, both inputs must always be connected or disconnected at the same time.
- Electric signals taken out via control electronics (e.g. actual value) must not be used for switching safety-relevant machine functions. (also see the European standard "Safety requirements on fluid-powered systems and components - Hydraulics", EN ISO 13849)

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Features

VT-SR7 amplifiers are used to control axial piston units of type A4VS...HS.
The assembly is fitted with an oscillator/demodulator for inductive position feedback and a PID-controller for controlling the swivel angle of the pump. The parameters for the controller are matched to the individual size of the axial piston unit.
The valve current is enabled by means of a relay call-up. The command value can be fed forward via the differential input or the command value input.

A measuring instrument installed in the front panel indicates the servo-valve current; $\pm 100 \%$ corresponds to $\pm 60 \mathrm{~mA}$.

Card holder:

- Type VT 3002-2X/32, see RE 29 928, single card holder without power supply unit

Power supply unit:

- Type VT-NE31-1X, see RE 29929 compact power supply unit 115/230 VAC Æ ± 24 VDC, 7 VA

Ordering code

> For the additional PID-controller, the
technical controller data must be specified.

[^19]Technical data (for applications outside these parameters, please consult us!)

Operating voltages:	
With voltage regulator U_{B}	$\pm 24 \mathrm{VDC}$
- Upper limit value $\quad u_{0}(t)_{\text {max }}$	$\pm 28 \mathrm{VDC}$
- Lower limit value $u_{0}(t)_{\text {min }}$	$\pm 22 \mathrm{VDC}$
Without voltage regulator $\quad U_{0} ; U_{M}$	$\pm 24 \mathrm{VDC}$ and $\pm 15 \mathrm{VDC}$ (stabilised)
- Upper limit values $\quad u_{0}(t)_{\text {max }} u(t)_{\text {max }}$	$\pm 28 \mathrm{VDC} ; \pm 15.2 \mathrm{VDC}$
- Lower limit values $\quad u_{0}(t)_{\text {min }}{ }^{\prime} u_{M}(t)_{\text {min }}$	$\pm 22 \mathrm{VDC} ; \pm 14.8 \mathrm{VDC}$
Power consumption (without valve) at $U_{0}= \pm 24 \mathrm{~V}^{1)} \quad l$	< 150 mA
Inputs:	
- Command value 1 U	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
- Command value 2 (with J9) U_{i}	$0 \mathrm{to} \pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
- Actual position value U_{i}	$0 \mathrm{to} \pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
- Enable U_{i}	+24 V with J13; 0 V with J 12 ($R_{\mathrm{i}}=700 \Omega$; relay circuit)
- Controller changeover U_{i}	+24 V with J13; 0 V with J 12 ($R_{\mathrm{i}}=700 \Omega$; relay circuit)
- Reserve relay $\quad U_{i}$	+24 V with J13; 0 V with J 12 ($R_{\mathrm{i}}=700 \Omega$; relay circuit)
Outputs:	
- Regulated output voltage ${ }^{1)} \quad U_{M}$	$\pm 15 \mathrm{~V} \pm 2 \% ; 150 \mathrm{~mA}$
- Valve current $I_{\text {max }}$	$\pm 60 \mathrm{~mA}$
- Valve current command value (with J10) U_{0}	$-10 \mathrm{~V} \hat{=}+60 \mathrm{~mA}$ (measuring output)
- Relay call-up voltage U	$+24 \mathrm{~V}\left(+U_{0}\right)$
Dither signal	$340 \mathrm{~Hz}\left(I_{\text {SS }}=3 \mathrm{~mA}\right)$
Relay data:	
- Nominal voltage U	+ 26 V
- Response voltage U	$>13 \mathrm{~V}$
- Release voltage U	1.3 V to 6.5 V
- Switching time t	$<4 \mathrm{~ms}$
- Coil resistance (at $25^{\circ} \mathrm{C}$) $\quad R$	700Ω
Type of connection	32-pin male connector, DIN 41 612, form D
Card dimensions	Euro-card 100×160 mm, DIN 41494
Front panel dimensions:	
- Height	3 HE (128,4 mm)
- Width soldering side	1 TE (5.08 mm)
- Width component side	7 TE
Permissible ambient temperature range J	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range J	-20 to $+70^{\circ} \mathrm{C}$
	0.3 kg

${ }^{1)}$ for version with voltage regulator

Functional description

VT-SR7 amplifiers operate with a push-pull output stage with bipolar transistors. The output of this output stage can be activated or deactivated using an enable circuit (relay K2). The enable is indicated by lighting up of LED "H2" on the front panel. The switching voltage of all relays is set to either 0 V or $+U_{0}$ by means of jumpers J 12 and J 13 (factory setting $+U_{0}$).
The output stage consists of an I-controller with connected dither signal generator. The amplitude of the dither signal can be adjusted using R7. The input stage (current command value) is controlled via a PD-controller. The actual current value fed back is indicated by the instrument on the front panel.
The oscillator/demodulator is used for acquiring the position. It is designed as plug-in board, the parameters of which are adapted to the relevant size of the axial piston unit.
The position command value and actual position value are fed to the PD-controller, with the D-component acting only on the actual value (velocity feedback).

The zero point can be adjusted from the front panel using R3 ("NP"). The required symmetric operating voltage $\pm U_{0}$ is protected against reverse polarity. If the printed circuit board is not fitted with a voltage regulator for supplying the controller and displacement transducer electronics, an additional, stabilised auxiliary voltage $\pm U_{M}$ must be provided. The auxiliary voltage connection is protected against reverse polarity up to a maximum current of 1 A .
Optionally, the amplifier can be provided with a PID-controller (Dcomponent acts only on the actual value). This controller can be used to superimpose a further closed control loop (e.g. for drive control). The P- and D-component can be adjusted on the front panel. The PID-controller configuration is customised and must therefore be indicated in clear text on the order. When dispatched, a special type designation is assigned to the amplifiers.

Preferred types

Material no.	Type
R900035612	VT-SR7-1X/0/A4VS.355HS
R900030717	VT-SR7-1X/0/A4VS.500HS
R900557769	VT-SR7-1X/1/A4VS.180HS
R900029274	VT-SR7-1X/1/A4VS.250HS
R900579280	VT-SR7-1X/1/A4VS.355HS
R900029181	VT-SR7-1X/1/A4VS.500HS

Engineering / maintenance notes / supplementary information

- The amplifier may only be plugged or unplugged when disconnected from the power supply!
- Command values may only be switched via relays with goldplated contacts (small voltages, small currents)!
- For switching card relays (enable, controller changeover, reserve) use only contacts with a load-carrying capacity of ca. $40 \mathrm{~V} / 50 \mathrm{~mA}$.
- Always shield command value and actual value cables; leave one end of shield open and connect the card-sided end to the ground (\perp)!
- Do not lay signal cables near power cables!
- Recommendation: 1. Also shield solenoid cables (one end to \perp)!

2. For lengths up to 50 m use cable type LiYCY
$1.5 \mathrm{~mm}^{2}$, for greater lengths, please consult us!

- Caution: When pilot pressure is applied to the actuating equipment and relay K2 is deactivated or the voltage supply is disconnected, the pump may swivel to its maximum position!
Note: Electrical signals brought out via control electronics (e.g. actual value) must not be used for switching safety-relevant machine functions! (See also the European standard "Safety requirements for fluid power systems and components - Hydraulics", prEN 982.)

Unit dimensions (dimensions in mm)

Rexroth

Bosch Group

> Digital control electronics for the axial piston pumps A4VS.. with HS4 control and A2V... with EO4 control

Type VT-VPCD

Component series 1X

Table of contents

Contents

Features of the control systems
Page
1
Features of the digital control electronics VT-VPCD
Ordering code
Functional description using the A4VS axial piston pump with HS4 control as example
Circuit variations of the HS4 control 4 and 5
Characteristic curves
Functional description of the control electronics
Block diagrams and pin assignments
Pin assignment of the D-Sub sockets on the front plate
Unit dimensions14

Technical data
15 and 16
Project planning / maintenance instructions / additional information

Features of the control systems

Features of the digital control electronics VT-VPCD

The parameterization is effected via a serial interface. The user-specific data can be exactly reproduced and is protected against unintended or unauthorized adjustment.

- Digital inputs for calling up pre-set parameters ${ }^{1)}$
- Ramp times for swivel angle and pressure command values ${ }^{1)}$
- Analog inputs for command and actual values ${ }^{1)}$
- Enable input and collective fault output ${ }^{1)}$
- Oscillators/demodulators for two inductive measuring systems
- Clocked, flow-controlled output stage
- Switching power supply unit for the internal supply voltages
- Function and status display LEDs
- 2 measuring sockets configurable via display and/or Bodac
${ }^{1)}$ Please also observe the corresponding bus documentation.
- Serial interface RS 232
- Up to 32 control electronics can be interconnected for parameterization and diagnosis via the local bus
- Size selection (size 40 to 1000 for A4VS...HS4, size 500 to 1000 for A2V...EO4) and parameterization via BODAC
- New: Parameterization for pump A4VHO 450 HS4
- Valve position controller
- Pressure controller with subordinate swivel angle controller
- Parameterizable power limitation
- Leakage compensation
- Master/slave capacity
- Mooring capacity
- Oscilloscope function
- Parameterizable test output
- Diagnosis display

Ordering code

VT-VPCD $\frac{1}{1} 1 \frac{1}{1} 1 \mathrm{X} /$	$1 / 1 \frac{1}{1} \frac{1}{1}$			
Digital control electronics for controlling variable displacement axial piston pumps		$0=$	1 =	with valve output stage
Component series 10 to $19 \quad=1 \mathbf{1 X}$ (10 to 19: Unchanged installation and connection dimensions)		$\mathrm{P}=$ $\mathrm{D}=$ C		PROFIBUS DPVO DeviceNet
For axial piston pump A4VS...HS4 with swivel angle sensor AWX F004 D01 and for axial piston pump A2V...EO4 (housing pump) with swivel angle sensor MCP-40/4742 = V0	1 =	$\mathrm{C}=$		CANopen with display
For axial piston pump A2V...EO4 (installation pump) with swivel angle sensor DK 100 (only available without bus connection)				

Preferred types	Material number
VT-VPCD-1-1X/V0/1-0-1	R901044346
VT-VPCD-1-1X/V0/1-P-1	R901089559

PC system requirements:

- Windows XP, Windows Vista, Windows 7
- RAM (recommendation 256 MB)
- 250 MB of available hard disk capacity

Required accessories:

- BODAC PC program: CD ordering information: SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/vpcd
- Interface cable: Cable set VT-HACD-1X/03.0/ HACD-PC (R900776897) or standard 1:1 cable

Suitable card holder:

- 19 inch racks VT 19101, VT 19102, VT 19103 and VT 19110 (see data sheet 29768)
- Closed card holder VT 12302 (see data sheet 30103) (preferred), mat. no. R900784153
- Open card holder VT 3002-2X/64G (see data sheet 29928), mat. no. R900991843 (Only for control cabinet installation!)
- Connection adapter VT 10812-2X/64G (see data sheet 30105), mat. no. R900713826

Functional description using the A4VS axial piston pump with HS4 control as example

The swivel angle and pressure control as well as the power limitation of the A4VS... variable displacement pump are effected by an electrically controlled proportional valve (1). Via the actuating piston (2) of the pump, this valve determines the position of the swash plate (3).
If the pump does not rotate, in case of depressurized highpressure and actuating system and if enable is not operated, the swash plate is held in the "Zero" swivel angle position by the spring centering.
The position of the swash plate is determined by an inductive position transducer (4), the actual pressure value is recorded by a pressure transducer. Both actual values are supplied to the VT-VPCD control electronics and linked with each other by the software.
The actual power value is calculated from the product of actual pressure value and actual swivel angle value. The controller software ensures by means of a minimum value generator that the controller corresponding to the working point is always active.

In the static condition, i.e. swivel angle command value equals actual swivel angle value, power command value equals actual power value or pressure command value equals actual pressure value, the valve control spool is in central position.
If the superior controllers demand e.g. an increase in the swivel angle (corresponds to an increase in the flow), the valve spool must be deflected out of the central position until the swivel angle has achieved the necessary value.
The sectional drawing shows the A4VS... variable displacement pump with HS4 control; the proportional valve (1) is controlled using the VT-VPCD control electronics.
Notice for the HS4 control:
With de-energized proportional valve and pump with clockwise rotation and if the actuating pressure is available, the pump swivels to swivel angle $\alpha=0$ (A4VSO design) or $\alpha=-100 \%$ (A4VSG design).

Circuit variations of the HS4 control

A4VSO - open circuit

Circuit variations of the HS4 control

A4VSG - closed circuit

Notice:
With de-energized valve and pending actuating pressure, the A4VSG... pump type without short-circuit valve (1) swivels to swivel angle right ($Q_{\max }$).

Static characteristic curve

Transition function with swivel angle command value step

Example A4VS with HS4 control, size 250, actuating pressure $p=125$ bar

Functional description of the control electronics

The control electronics is set-up as printed circuit board in Europe format $100 \times 160 \mathrm{~mm}$, fitted on both sides. It comprises a switching power supply unit [1] creating all internally required voltages.
The central unit is a microcontroller controlling the entire process and realizing the controller functions. Data for configuration, command values and parameters are stored in a FLASH in a non-volatile form.
Four binarily coded digital inputs are used to call up parameter sets (command values) from the memory in which you can store a maximum of 16 sets. A call-up activates a command value for the swivel angle, the pressure and the power limitation as well as ramp times for swivel angle and pressure.
More control inputs have the following functions:
"Command value valid": Release of the parameter set addressed by the current call-up (H active)
"Enable": Activation of the control (H active)
Comment: $\quad \mathrm{H}$ active $=$ High active (level 16 V to U_{B}) L active = Low active (level 0 V to 5 V) L/H edge = Low High edge
Via the differential inputs AI7, Al5 and AI4[3], the analog command value for the swivel angle, the pressure and the maximum power is specified. With a positive swivel angle command value, the pump swivels in "counterclockwise" swivel direction (= flow direction $\mathrm{P} \rightarrow \mathrm{B}$). The digital call-up command values are added to the analog command values; the total of both command values is supplied to the controller input via the relevant ramp generators.
The controller output signal controls the output stage [6] depending on the command/actual value differences.
The position of the valve spool [11], the swivel angle of the variable displacement pump [12a, 12b or 12c] and the system pressure [13] are measured and supplied to the control loop via evaluation electronics [7].
For the pressure control, different modes are provided:
Depending on the configuration, the pressure controller works with one or two pressure sensors.
Open circuit:
1 sensor, optionally current or voltage
Closed circuit:
2 sensors, optionally current or voltage
In the closed circuit, both pressure sensors are evaluated.
As soon as the control electronics is in pressure control, the larger of the two pressures determines the control behavior. To compensate control deviations (pressure command valueactual pressure value), the pressure controller can also swivel the pump to the opposite side as well as beyond its specified swivel angle command value.
The switching outputs are configured via BODAC. You can select the following functions:

- Swivel angle control active
- Pressure control active DO2
- Power limitation active DO3
- Slave mode active DO4
- Swivel angle in the accuracy window DO5
- Pressure in the accuracy window DO6
- Rectangular 32 Hz DO7

The test output (b26 or measuring socket X 1) is also configured via BODAC. It is used for the analog output of internal variables.

Enable and error messages

Setting the enable input activates the control. If no command value call-up is activated, parameter set 0 is set.
Error logics identify the following faults:

- Cable brake or short circuit in the actual valve value sensing
- Cable brake or short circuit in the actual swivel value sensing
- Cable break at the pressure transducer (only current interface)
- Closed-loop control errors (i.e. control deviations between swivel angle command value and actual swivel angle value)
An error is displayed at output d22. The "OK" message goes out, signal level is 0 V .
Errors are also shown at the display.

Parameterization and diagnosis

Using the serial interface [2], the pump size is selected and the leakage oil correction and the sequence control are activated or deactivated and switching outputs and the test output are configured via BODAC at the front-side D-Sub socket. Via the local bus, up to 32 control electronics can be connected. Via BODAC, every control electronics is assigned a bus address. Reconnection of the serial interface cable is omitted. More information in document 30028-01-B.

Display elements and measuring sockets

The freely configurable measuring sockets $\mathrm{X} 1 / \mathrm{X} 2$ located at the front plate serve to display the process signals. Configuration see online help.

LEDs display the following states:
LED "I" (green): Enable active
LED "OK" (green): OK ready for operation
LEDs "I1"..."14" (yellow): Binarily coded command value call-ups
LED "I5" (yellow) Slave mode
LED "I6" (yellow) Command value valid
LED "I7" (yellow) Not assigned
[] = Assignment to the block diagrams on pages 8 to 10

VT-VPCD-1-1X/V0/1-0-1 for A4VS...HS4 axial piston pump with AWX F004 D01 swivel angle sensor

Pin assignment of the male multipoint connector
VT-VPCD-1-1X/V0/1-0-1 for A4VS...HS4 axial piston pump with AWX F004 D01 swivel angle sensor

Row d		
Pin	Short de- nomination	Description
2	DI1	Command value call-up 1, H active
4	DI2	Command value call-up 2, H active
6	DI3	Command value call-up 4, H active
8	DI4	Command value call-up 8, H active
10	D15	Slave mode, H active
12	DI6	DI1 to DI5 valid, H active
14		n.c.
16		n.c.
18	DI9	Enable, H active
20	DO1	Swivel angle controller active, H active
22	OK	OK output, H active
24	Data +	Local bus
26	DO2	Pressure controller active, H active
28	Data -	Local bus
30	AO1	Control of valve with OBE, ± 10 V
32	AO2	Resulting swivel angle command value for master/slave operation

Row b		
Pin	Short de- nomination	Description
2	Al3+	Command value swivel angle slave (in case of slave operation)
4	Al3-	Command value swivel angle slave, reference
6	Al2+	Actual value pressure p_{A}, (I or U)
8	Al2-	Actual value pressure $p_{\text {A, }}$ reference
10		n.c.
12		n.c.
14	Al4+	Command value swivel angle
16	Al4-	Command value swivel angle, reference
18	Al5+	Command value pressure
20	AI5-	Command value pressure, reference
22	Al6+	Actual value pressure p_{B}, (/ or U)
24	Al6-	Actual value pressure p_{B}, reference
26	AO3	Test output (measuring socket X1)
28	AGND	Analog GND
30	REF-	Reference voltage -10 V
32	REF+	Reference voltage +10 V

Row z		
Pin	Short denomination	Description
2	MA+	Solenoid A +
4	MA-	Solenoid A -
6	MB+	Solenoid B +
8	MB-	Solenoid B -
10	Shield	Shield
12	L1O-	Position transducer of valve feed -, pin 2
14	L1I-	Position transducer of valve actual val-ue-, pin 4
16	L11+	Position transducer of valve actual value + , pin 3
18	L1O+	Position transducer of valve feed + , pin 1
20	System earth	System earth
22	DO3	Power limitation active, H active
24	DO4	Slave mode active, H active
26	DO5	$\left\|\alpha_{\text {command }}-\alpha_{\text {actual }}\right\|$ < window, H active
28	DO6	$\left\|p_{\text {command }}-p_{\text {actual }}\right\|<$ window, H active
30	UB	Supply voltage $+U_{B}$
32	LO	Supply voltage 0 V

Row f		
Pin	Short de- nomination	Description
2	DO7	Rectangular 32 Hz
4		n.c.
6		n.c.
8	Al7+	Command value power
10	Al7-	Command value power, reference
12		n.c.
14		n.c.
16		n.c.
18		n.c.
20	L2O-	Swivel angle sensor of pump, feed -, pin 2
22	L2l-	Swivel angle sensor of pump, actual value,- pin 4
24	L2I+	Swivel angle sensor of pump, actual value,+ pin 3
26	L2O+	Swivel angle sensor of pump, feed + , pin 1
28	CAN Gnd	CAN bus reference
30	CAN L	CAN bus input/output
32	CAN H	CAN bus input/output

VT-VPCD-1-1X/V0/1-0-1 for A2V...EO4 axial piston pump (housing pump) with MCP40/4742 swivel angle sensor

Pin assignment of the male multipoint connector
VT-VPCD-1-1X/V0/1-0-1 for A2V...EO4 axial piston pump (housing pump) with MCP-40/4742 swivel angle sensor

Row d		
Pin	Short de- nomination	Description
2	DI1	Command value call-up 1, H active
4	DI2	Command value call-up 2, H active
6	DI3	Command value call-up 4, H active
8	DI4	Command value call-up 8, H active
10	D15	Slave mode, H active
12	DI6	DI1 to DI5 valid, H active
14		n.c.
16		n.c.
18	DI9	Enable, H active
20	DO1	Swivel angle controller active, H active
22	OK	OK output, H active
24	Data +	Local bus
26	DO2	Pressure controller active, H active
28	Data -	Local bus
30	AO1	Control of valve with OBE, $\pm 10 \mathrm{~V}$
32	AO2	Resulting swivel angle command value for master/slave operation

Row b		
Pin	Short denomination	Description
2	Al3+	Command value swivel angle slave (in case of slave operation)
4	Al3-	Command value swivel angle slave, reference
6	Al2+	Actual value pressure p_{A}, ($/$ or U)
8	Al2-	Actual value pressure $p_{\text {A }}$, reference
10	Al1+	Swivel angle sensor of pump, pin 2
12	Al1-	Swivel angle sensor of pump, pin 5
14	Al4+	Command value swivel angle
16	Al4-	Command value swivel angle, reference
18	Al5+	Command value pressure
20	Al5-	Command value pressure, reference
22	Al6+	Actual value pressure p_{B}, ($/$ or U)
24	Al6-	Actual value pressure p_{B}, reference
26	AO3	Test output (measuring socket X1)
28	AGND	Analog GND and swivel angle sensor of pump, pin 5
30	REF-	Reference voltage -10 V
32	REF+	Reference voltage +10 V and swivel angle sensor of pump, pin 4

Row f		
Pin	Short de- nomination	Description
2	DO7	Rectangular 32 Hz
4		n.c.
6		n.c.
8	Al7+	Command value power
10	Al7-	Command value power, reference
12		n.c.
14		n.c.
16		n.c.
18		n.c.
20		n.c.
22		n.c.
24		n.c.
26		n.c.
28	CAN Gnd	CAN bus reference
30	CAN L	CAN bus input/output
32	CAN H	CAN bus input/output

Row 2		
Pin	Short denomination	Description
2	MA+	Solenoid A +
4	MA-	Solenoid A -
6	MB+	Solenoid B +
8	MB-	Solenoid B -
10	Shield	Shield
12	L1O-	Position transducer of valve feed -, pin 2
14	L11-	Position transducer of valve actual value -, pin 4
16	L11+	Position transducer of valve actual value +, pin 3
18	L1O+	Position transducer of valve feed + , pin 1
20	System earth	System earth
22	DO3	Power limitation active, H active
24	DO4	Slave mode active, H active
26	DO5	$\left\|\alpha_{\text {command }}-\alpha_{\text {actual }}\right\|<$ window, H active
28	DO6	$\left\|p_{\text {command }}-p_{\text {actual }}\right\|<$ window, H active
30	UB	Supply voltage $+U_{B}$
32	LO	Supply voltage 0 V

VT-VPCD-1-1X/V100/1-0-1 for A2V...EO4 axial piston pump (installation pump) with DK 100 swivel angle sensor

Pin assignment of the male multipoint connector

VT-VPCD-1-1X/V100/1-0-1 for A2V...EO4 axial piston pump (installation pump) with DK 100 swivel angle sensor

Row d		
Pin	Short de- nomination	Description
2	DI1	Command value call-up 1, H active
4	DI2	Command value call-up 2, H active
6	DI3	Command value call-up 4, H active
8	DI4	Command value call-up 8, H active
10	D15	Slave mode, H active
12	DI6	DI1 to DI5 valid, H active
14		n.c.
16		n.c.
18	D19	Enable, H active
20	DO1	Swivel angle controller active, H active
22	OK	OK output, H active
24	Data +	Local bus
26	DO2	Pressure controller active, H active
28	Data -	Local bus
30	AO1	Control of valve with OBE, ± 10 V
32	AO2	Resulting swivel angle command value for master/slave operation

Row b		
Pin	Short de- nomination	Description
2	Al3+	Command value swivel angle slave (in case of slave operation)
4	AI3-	Command value swivel angle slave, reference
6		n.c.
8		n.c.
10		n.c.
12		n.c.
14	Al4+	Command value swivel angle
16	AI4-	Command value swivel angle, reference
18	AI5+	Command value pressure
20	AI5-	Command value pressure, reference
22	Al6+	Actual value pressure p_{B}, (or U)
24	AI6-	Actual value pressure p_{B}, reference
26	AO3	Test output (measuring socket X1)
28	AGND	Analog GND
30	REF-	Reference voltage -10 V
32	REF+	Reference voltage +10 V

Row z		
Pin	Short denomination	Description
2	MA+	Solenoid A +
4	MA-	Solenoid A -
6	MB+	Solenoid B +
8	MB-	Solenoid B -
10	Shield	Shield
12	L1O-	Position transducer of valve feed -, pin 2
14	L1I-	Position transducer of valve actual value -, pin 4
16	L11+	Position transducer of valve actual value + , pin 3
18	L1O+	Position transducer of valve feed + , pin 1
20	System earth	System earth
22	DO3	Power limitation active, H active
24	DO4	Slave mode active, H active
26	DO5	$\left\|\alpha_{\text {command }}-\alpha_{\text {actual }}\right\|<$ window, H active
28	DO6	$\left\|p_{\text {command }}-p_{\text {actual }}\right\|<$ window, H active
30	UB	Supply voltage $+U_{B}$
32	LO	Supply voltage 0 V

Row f		
Pin	Short de- nomination	Description
2	DO7	Rectangular 32 Hz
4		n.c.
6		n.c.
8	Al7+	Command value power
10	Al7-	Command value power, reference
12		n.c.
14		n.c.
16		n.c.
18		n.c.
20	L2O-	Swivel angle sensor of pump, feed,- pin 4
22	L2l-	Swivel angle sensor of pump, actual value,- pin 3
24	L2I+	Swivel angle sensor of pump, actual value,+ pin 2
26	L2O+	Swivel angle sensor of pump, feed + , pin 1
28		n.c.
30		n.c.
32		n.c.

Pin assignment of the D-Sub sockets on the front plate

Technical data, electrical (For applications outside these parameters, please consult us!)
Valve 4WRE6-2X/822 for HS4 control

Current consumption per solenoid	$I_{\max }$	2.5 A
Control current with constant swivel angle	I_{a}	Solenoid a: 450 mA
	I_{b}	Solenoid b: 700 mA
Solenoid coil resistance:		
\quad - Cold value at $20^{\circ} \mathrm{C}$	R	2.7Ω
\quad Max. hot value	R	4.05Ω
Electrical connection		Plug-in connection according to DIN EN 175301-803
Protection class according to EN 60529	IP 65	

Position transducer to the valve 4WRE6-2X/822

Carrier frequency	f
Coil resistance (at $20^{\circ} \mathrm{CHz}$):	
\quad - Between port 1 and 2	R
Between port 3 and 4	R
113Ω	
Electrical connection	Plug-in connection according to DIN 43650-BFZ-Pg9
Protection class of the plug-in connection	IP 65
according to EN 60529	

Swivel angle sensor type AWX F004 D01

Carrier frequency	f	5 kHz
Coil resistance (at $20^{\circ} \mathrm{C}$):	R	110Ω
\quad - Between port 1 and 2	R	560Ω
\quad - Between port 3 and 4		Plug-in connection according to DIN 43650-BFZ-Pg9
Electrical connection	IP 65	
Protection class of the plug-in connection according to EN 60529		
Closed-loop control quality of the HS4 control	$\%$	≤ 0.2
Hysteresis	$\%$	≤ 0.2
Repeatability	$\%$	≤ 1.0
Linearity deviation of the swivel angle	$\%$	≤ 1.5 of the maximum measuring pressure of the
Linearity deviation of the pressure	pressure transducer	

Technical data, electrical (For applications outside these parameters, please consult us!)
VT-VPCD-1-1X/.../1-0-1 control electronics

Operating voltage	U_{B}	24 VDC
Operating range		
Upper limit value	$U_{B}(t)_{\text {max }}$	30 V
Lower limit value	$U_{B}(t)_{\text {min }}$	21 V
Current consumption	$I_{\text {max }}$	<2A
Oscillator frequency (position transducer valve spool, swivel angle)	f	Approx. 5 kHz at $10 \mathrm{~V}_{\text {SS }}$
Digital inputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=16 \mathrm{~V} \text { to } U_{B} \\ & \hline \end{aligned}$
Digital outputs	Signal	$\begin{array}{\|l\|} \hline \log 0=0 \text { to } 5 \mathrm{~V} \\ \log 1=U_{\mathrm{B}}-3 \mathrm{~V} \\ I_{\max }=30 \mathrm{~mA}, \text { short-circuit-proof } \\ \text { load resistance } \leq 10 \mathrm{k} \Omega \\ \hline \end{array}$
Analog inputs Al1... Al7 can be configured as voltage input		
Al3, Al4	U	$\pm 10 \mathrm{~V}$
Al1, Al2, Al5, Al6, Al7	U	0 to 10 V
Input resistance	$R_{\text {e }}$	$100 \mathrm{k} \Omega$
Resolution	\cup	5 mV for range $\pm 10 \mathrm{~V}, 2.5 \mathrm{mV}$ for range 0 to 10 V
Non-linearity	\cup	< 10 mV
Analog inputs AI2, AI4, AI5 and AI6 can be configured as current input		
Range	I	4 to 20 mA
Input resistance	$R_{\text {e }}$	100Ω (voltage drop across actual value input pressure at 4 mA approx. 1.7 V , at 20 mA approx. 3.5 V)
Leakage current		0.15% (with 500Ω between pin $\mathrm{Al} \mathrm{x} \mathrm{-} \mathrm{and} 0 \mathrm{~V}$)
Resolution	1	$5 \mu \mathrm{~A}$ [12 bit]
Analog outputs AO1, A02 and A03		
Output voltage	U	$\pm 10 \mathrm{~V}$
Load	$R_{\text {Lmin }}$	$1 \mathrm{k} \Omega$
Resolution	U	10 mV (11 bit)
Residual ripple	U	$\pm 25 \mathrm{mV}$ (without noise)
Reference voltage		
Voltage	U	$\pm 10 \mathrm{~V}$
Current	$I_{\text {max }}$	30 mA
Residual ripple	U	$<20 \mathrm{mV}$
Scan time	T	2 ms
Serial interface		RS 232 (front plate), D-Sub socket 9-pole
Type of connection		64-pole male multipoint connector, DIN 41612, design G
Local bus, distance to the furthermost participant	1	Max. 280 m line length
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front plate dimensions:		
Height		3 HE (128.4 mm)
Width soldering side		$1 \mathrm{TE}(5.08 \mathrm{~mm})$
Width component side		7 TE (35.56 mm)
Admissible ambient temperature range	$ง$	0 to $50{ }^{\circ} \mathrm{C}$
Storage temperature range	$ง$	-20 to $+70^{\circ} \mathrm{C}$
Weight	m	0.2 kg

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30028-U.

Project planning / maintenance instructions / additional information

Product documentation for the VT-VPCD

30028

Technical data sheet (this document)
30028-B
Installation and operating instructions
30028-01-B
Commissioning and operating instructions 30028-U
Environmental compatibility statement
30028-01-Z
Commissioning instructions PROFIBUS interface 30028-02-Z
Commissioning instructions CANopen interface 30028-03-Z
Commissioning instructions DeviceNet interface

- The control electronics may only be unplugged and plugged when de-energized!
- Only carry out measurements at the card using instruments with $R_{\mathrm{i}}>100 \mathrm{k} \Omega$!
- For switching analog command values and digital call-ups, relays with gold-plated contacts have to be used (small voltages, low currents)!
- Always shield command and actual value lines; connect shielding to system earth on the card-side, open at one side!
- Recommendation: Up to a length of 50 m , use the line type LiYCY $1.5 \mathrm{~mm}^{2}$ for solenoid line, for position transducer line use cable type LiYCY $0.5 \mathrm{~mm}^{2}$, shielded. With greater lengths, please contact us!
- The distance to aerial lines or radios must be at least 1 m !
- Do not lay solenoid and signal lines near power cables!
- Commissioning and programming of the control electronics are described in detail in the operating instructions 30028-B.
- For perfect control results, the quality of the sensors is important.

Notice: Electric signals taken out via control electronics (e.g. "Fault message" signal) must not be used for switching safetyrelevant machine functions!
(see also the European standard "Safety requirements for fluid power systems and their components - Hydraulics", EN ISO 4413)

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Block diagram with pin assignment daughter card
Technical data
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling direct operated high-response valves with positive overlap
- Amplifier with additional electronics (daughter card)
- Analog amplifiers in Europe format for installation in 19" racks
- Adjustment possibilities
- Zero point valve
- Sensitivity
- Ramp times
- Controlled output stage
- Enable input
- Ramp generator that can be switched off
- Compensation step
- Inputs and outputs short-circuit-proof
- External ramp switch-off
- External voltage-controlled ramp setting via differential inputs
- Cable break detection for actual value cable
- Position control with PID behavior

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electric position feedback and inflected characteristic curve
VT-VRPA2-527-10/V0/RTS	0811405137	4WRP 6...S-1X...
VT-VRPA2-537-10/V0/RTS	0811405138	4WRP 10...S-1X...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Block diagram with pin assignment daughter card

Operating range: Ramp generator

- Internal/external specification $0 \ldots+10 \mathrm{~V}$ for the ramp time

Logic signals

- Ramp "Off"
- Ramp command values "EXTERNAL"
- Ramp signal $=0 \mathrm{~V}$

Additional information

Information for the use of ramps

1. Quadrant recognition

There is automatic quadrant recognition of the ramps for positive and negative valve command values.
2. Switch-over INTERNAL/EXTERNAL ramp command value specification

- Switch-over is effected by means of voltage signal at z24 to external specification
- This renders the setting potentiometers ineffective
- "EXTERNAL" state is displayed by LED.

3. INTERNAL ramp setting

- Set potentiometer to desired ramp behavior
- Prerequisite: No command at z24 and/or b20.

4. EXTERNAL ramp setting

- Voltage specification at z14 and z20 (joint reference point z6)
- Max. resolution: 75 mV

Prerequisite: Command at z24 and no command at b20.
5. Ramp time range

- You can set 2 ramp time ranges (front plate selector). They are valid for internal and external command value specification.

6. Ramp OFF

- Ramp switch-off by means of command at b20
- If the ramp has already been started, transition to the signal end value is effected by means of a step
- "Ramp Off" state is displayed by LED.

7. Ramp time $\Delta T=0$

- If the ramp output voltage $U_{\mathrm{A}}=0 \mathrm{~V}$, the signal output z18 is switched to 24 V
- The state is also displayed by an LED
- If the ramp function is switched off, there is no message.

Technical data (For applications outside these parameters, please consult us!)

Notice: Power zero b2 and control zero b12 must be separately led to the central ground (neutral point).
${ }^{1)}$ Values for potentiometer in end position (cw) and for "zero potentiometer" in central position.

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 5 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging

Hydraulics

Electric amplifiers

Type VT-VRPA2-5...-1X/V0/RTP

Component series 1X

Table of contents

Contents

Features
Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Use of ramps
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page

- Suitable for controlling direct operated high-response valves
- Analog amplifiers in Europe format for installation in 19" racks
- Ramp generator that can be switched off
- Compensation step
- Controlled output stage
- Enable input
- Inputs and outputs short-circuit-proof
- External ramp switch-off

6 - Adjustment possibilities

- Zero point valve
- Sensitivity
- Ramp times
- Cable break detection for actual value cable
- Position control with PID behavior

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electric position feedback and positive overlap
VT-VRPA2-527-10/V0/RTP	0811405119	4WRP 6...S-1X...
VT-VRPA2-537-10/V0/RTP	0811405120	4WRP 10...S-1X...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data (For applications outside these parameters, please consult us!)

Use of ramps

Information for the use of ramps

Ramp ON, if b20 open.
Ramp OFF, if b20 connected to b22 or $U=8.5 \ldots 40 \mathrm{~V}$ at b20.
With Ramp OFF, Enable OFF or Cable break, any ramp started before will be canceled. Transition to the signal end value is effected by means of a step.

Quadrant recognition A

When passing through the central position, the direction of movement of the valve spool remains the same, however the cylinder changes its direction. So that the acceleration values for both directions of movement remain the same, the ramp is switched by means of quadrant recognition when the valve passes from one quadrant to the next.

Compensation of the dead zone in central valve position B
The positive overlap of $\pm 20 \%$ of the spool travel is skipped by means of an electronic compensation circuit in the range $\pm 15 \%$ of the spool travel.

Zero point calibration

For the calibration, a small command value ($U_{\mathrm{E}}=0.3 \ldots 0.5 \mathrm{~V}$) must be specified in order to ensure that the dead zone has been left.

A

B

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging

Hydraulics

Electric amplifiers

Type VT-VRRA1-527-1X/V0/...

Component series 1X

Features

- Suitable for controlling direct operated high-response valves with linear characteristic curve and electrical position feedback
- Analog amplifiers in Europe format for installation in 19" racks
- Controlled output stage
- Enable input
- Outputs short-circuit-proof

5 - Adjustment possibilities - Zero point valve

- Cable break detection for actual value cable

5 - Position control with PID behavior

Notice:

The photo shows an example configuration. The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves LVDT-AC
VT-VRRA1-527-10/V0	0811405123	4WRPH 6..L-1X...
VT-VRRA1-527-10/V0/RV	0811405148	4WRPH 6..L-1X...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

* 0811405148 without

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at b16/b18 and b2/b $4(0 \mathrm{~V})$	Nominal $24 \mathrm{~V}=$, Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots .28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at b16-b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Valve solenoid, max. A/VA	2.7/25 (size 6)
Current consumption, max. A	1.5
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) VA	35
Input signal (command value)	$\begin{aligned} & \begin{array}{l} \text { z10: } U_{\mathrm{E}} \\ \text { z12: } \\ \text { z8 } \\ \text { b10 } \end{array} \\ & \hline \end{aligned}$
0811405148	$U_{E}=+3.5 \ldots 6.5 \ldots 9.5 \mathrm{~V}$
0811405123	$U_{E}=0 \ldots \pm 10 \mathrm{~V}$
Actual value feedback	Osci b26: $\quad 10.4 \mathrm{~V} / 8 \mathrm{kHz}$
0811405148	Testp. z28: $U_{E}=+3.5 \ldots 6.5 \ldots 9.5 \mathrm{~V}$
0811405123	Testp. z28: $U_{E}=0 \ldots \pm 10 \mathrm{~V}$
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Cable lengths between amplifier and valve	Solenoid cable:to 20 m $1.5 \mathrm{~mm}^{2}$ 20 to 50 m $2.5 \mathrm{~mm}^{2}$ Actual value: Max. 50 m with $100 \mathrm{pF}^{\mathrm{F}} / \mathrm{m}$
Short-circuit-proof outputs	Output stage to the solenoid Signal to the positional transducer Supply voltage for potentiometer
Special features	Cable break protection for actual value cable, Position control with PID behavior, Fast energization and fast deletion for short actuating times
LED displays	green: Enable yellow: Cable break actual value red: $\quad U_{B}<U_{B \text { min }}(\leqq 21 \mathrm{~V})$
Error message - Cable break actual value - U_{B} too low	z26: $\begin{aligned} & \text { No error +24 V/0.1 A } \\ & \text { Error: } 0 \mathrm{~V}\end{aligned}$
Zero point adjustment	
0811405148	Fixedly set
0811405123	Via trimming potentiometer
Circuit board format mm	$(100 \times 160 \times \text { approx. } 35) /(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$ Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.35 kg
Notice: Power zero b2 and control zero b12 must be separately led to the central ground (neutral point).	

Unit dimensions (dimensions in mm)

* Potentiometer only with 0811405123

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Component series 2 X

Table of contents

Contents

Features
Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page
1
2
2
3
4

5

5

- Suitable for controlling direct operated high-response valves with linear characteristic curve and position feedback (Lvdt-DC/DC)
- Analog amplifiers in Europe format for installation in 19" racks
- Controlled output stage
- Enable input
- Outputs short-circuit-proof
- Adjustment possibilities - Zero point valve
- Cable break detection for actual value cable
- Position control with PID behavior

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electrical position feedback
VT-VRRA1-527-20/V0	0811405060	4WRPH6...L-2X
VT-VRRA1-537-20/V0	0811405061	4WRPH10...L-2X
VT-VRPA1-537-20/V0	0811405062	5WRP10...L-2X

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $\mathrm{z} 2-\mathrm{b} 2$	Nominal $24 \mathrm{~V}=$, Battery voltage $21 . . .40 \mathrm{~V}$, Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at z2-b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{\mathrm{B}}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (size 6) $3.7 / 60$ (size 10)
Current consumption, max. A	1.7×2.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37×55
Input signal (command value)	$\left.\begin{array}{l}\text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \text { z20: } 0 \ldots \pm 10 \mathrm{~V} \\ \left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)\end{array}\right\} \quad$ Differential amplifier
Signal source	Potentiometer $10 \mathrm{k} \Omega$, Supply $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{aligned} & \text { b30: }-15 \mathrm{~V} \\ & \text { z30: +15 V } \end{aligned}$
Actual value signal	b22: $0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{i}}=20 \mathrm{k} \Omega$
Actual value reference	b24
Solenoid output	Clocked current controller
$\mathrm{b} 6-\mathrm{b} 8 \quad I_{\text {max }}$	2.7 A 3.7 A
Cable lengths between amplifier and valve	Solenoid cable: to $20 \mathrm{~m} \mathrm{1.5mm}^{2}$ 20 to $60 \mathrm{~m}^{2} .5 \mathrm{~mm}^{2}$ Position transducer: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$
LED displays	green: Enable yellow: Cable break actual value red: \quad Undervoltage (U_{B} too low)
Error message - Cable break actual value - U_{B} too low $- \pm 15 \mathrm{~V}$ stabilization	z22: Open collector output to $+U_{B}$ max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	$(100 \times 160 \times \text { approx. 35) }(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$ Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F 32
Ambient temperature range ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.37 kg
Notice Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).	

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Type VT-VRRA1-5...-2X/V0/K...-AGC

Component series 2 X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Commissioning
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page

- Suitable for controlling direct operated high-response valves with inflected characteristic curve
- Amplifier with additional electronics (daughter card)
- Linearization of inflected valve characteristic curves
- Area adjustment of single rod cylinders
- Analog amplifiers in Europe format for installation in 19" racks

5 - Controlled output stage
6 - Enable input

- Outputs short-circuit-proof

6 - Adjustment possibilities - Zero point valve

- Cable break detection for actual value cable
- Position control with PID behavior
- Gain in the small signal range

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electrical position feedback and inflected characteristic curve
VT-VRRA1-527-20/V0/K40-AGC	0811405065	4WRPH 6...P-2X...
VT-VRRA1-527-20/V0/K60-AGC	0811405066	4WRPH 6...P-2X...
VT-VRRA1-537-20/V0/K40-AGC	0811405067	4WRPH 10...P-2X...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-$ b2	Nominal $24 \mathrm{~V}=$, Battery voltage $21 \ldots 40 \mathrm{~V}$, Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at z 2 - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{\mathrm{B}}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (size 6) 3 3.7/60 (size 10)
Current consumption, max. A	1.7 2.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37 5
Input signal (command value)	$\begin{array}{\|l} \left.\begin{array}{l} \text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ z 20: 0 \ldots \pm 10 \mathrm{~V} \end{array}\right\} \quad \text { Differential amplifier } \\ \left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right) \end{array}$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{aligned} & \text { b30: }-15 \mathrm{~V} \\ & \text { z30: +15 V } \\ & \hline \end{aligned}$
Actual value signal	b22: $0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{i}}=20 \mathrm{k} \Omega$
Actual value reference	b24
Solenoid output$\mathrm{b} 6-\mathrm{b} 8$$\quad I_{\max }$	Clocked current controller
	2.7 A 3.7 A
Cable lengths between amplifier and valve	Solenoid cable: to $20 \mathrm{~m} \mathrm{1.5mm}^{2}$ Position transducer: 20 to $60 \mathrm{~m}^{2.5 \mathrm{~mm}^{2}}$ $\times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs, Linearization of the inflected flow characteristic curve
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$, Area adjustment of single rod cylinders, Gain in the small signal range
LED displays	green: Enable yellow: Cable break actual value red: Undervoltage $\left(U_{B}\right.$ too low $)$
Error message - Cable break actual value - U_{B} too low - ± 15 V stabilization	z22: Open collector output to $+U_{B}$ max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.39 kg
Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).	

Commissioning

1. Setting the electric and hydraulic zero point using the "zero" potentiometer.
With closed control loop, the following error displayed by the CNC is then controlled to 0 .
2. Adjustment single rod cylinder

- "S" selector switch setting on daughter card
- Comparison with direction-dependant command value attenuator with step switch K3 (coarse), with potentiometer P2 (fine).

3. Optimization of the gain in the small signal range with potentiometer P1.

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Type VT-VRRA1-5...-2X/V0/KV-AGC

Component series 2 X

Table of contents

Contents

Features
Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Commissioning
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page
1
2
2

3
4
5
6
6

- Suitable for controlling direct operated high-response valves with linear characteristic curve
- Area adjustment of single rod cylinders
- Analog amplifiers in Europe format for installation in 19" racks
- Controlled output stage
- Enable input
- Outputs short-circuit-proof
- Adjustment possibilities - zero point valve
- Cable break detection for actual value cable
- Position control with PID behavior
- Gain in the small signal range

Notice:

The photo shows an example configuration. The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electric position feedback and linear characteristic curve
VT-VRRA1-527-20/V0/KV-AGC	0811405069	4WRPH 6...P-2X...
VT-VRRA1-537-20/V0/KV-AGC	0811405070	4WRPH 10...P-2X...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Position	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\mathbf{D}	\mathbf{E}	\mathbf{F}
Amplification K3	$1: 1$	$1.06: 1$	$1.15: 1$	$1.23: 1$	$1.33: 1$	$1.44: 1$	$1.56: 1$	$1.70: 1$	0.733	0.7	0.666	0.633	0.6	0.566	0.533	0.5
Area ratio	1	0.97	0.934	0.9	0.867	0.834	0.8	0.766	$1.86: 1$	$2.04: 1$	$2.23: 1$	$2.50: 1$	$2.77: 1$	$3.12: 1$	$3.52: 1$	$4: 1$

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-b 2$	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at $\mathrm{z2}$ - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{\mathrm{B}}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (size 6) $3.7 / 60$ (size 10)
Current consumption, max. A	1.7×2.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37×55
Input signal (command value)	$\left.\begin{array}{l}\text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \text { z20: } 0 \ldots \pm 10 \mathrm{~V}\end{array}\right\}$ Differential amplifier $\left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{aligned} & \hline \mathrm{b} 30:-15 \mathrm{~V} \\ & \mathrm{z} 30:+15 \mathrm{~V} \\ & \hline \end{aligned}$
Actual value signal	b22: $0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{i}}=20 \mathrm{k} \Omega$
Actual value reference	b24
Solenoid outputb6 - b8	Clocked current controller
	2.7 A 3.7 A
Cable lengths between amplifier and valve	Solenoid cable: to $20 \mathrm{~m} \mathrm{1.5m}^{2}$ Position transducer: 20 to $60 \mathrm{~m}^{2} .5 \mathrm{~mm}^{2}$ $0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$ Area adjustment of single-rod cylinders (K3) Amplification in the small signal range (P1) Variable adjustment of the loop gain in the feed speed range (K1) Range setting of feed speed range (K2)
LED displays	green: Enable yellow: Cable break actual value red: Undervoltage $\left(U_{B}\right.$ too low $)$
Error message - Cable break actual value - U_{B} too low - $\pm 15 \mathrm{~V}$ stabilization	z22: Open collector output to $+U_{B}$ Max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	$-20 \ldots+70$
Weight m	0.40 kg

Notice:

Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).

Commissioning

1. Setting the electric and hydraulic zero point using the ,zero" potentiometer. With closed control loop, the following error displayed by the CNC is then controlled to 0 .
2. Setting of the range of minimum valve modulation by means of the rotary encoding switch K2.
3. Reduction of the amplification by means of the rotary encoding switch K1 so that the drive stabilizes in the area of minimum valve modulation.
4. Carry out point 2 and 3 in several steps, if necessary.
5. Adjust different forward and backward speeds (area adjustment of single rod cylinders) using switch S and rotary encoding switch K3.
6. Adjust the optimization of the amplification in the small signal range by means of P1 (complete reduction of the following error).

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging

Electric amplifiers

Component series 2X

Table of contents

Contents

Features
Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Unit dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling pilot operated directional control valves, progressive with linear fine control
- Analog amplifiers in Europe format for installation in 19" racks
- Controlled output stage
- Enable input
- Outputs short-circuit-proof

5 - Adjustment possibilities - Zero point valve

- Cable break detection for actual value cable

5 - Position control with PID behavior

Notice:

The photo shows an example configuration. The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For directional control valves, pilot operated, with electrical position feedback
VT-VRRA1-527-20/V0/2STV	0811405063	4WRL $10 \ldots 35 \mathrm{~V} / \mathrm{V} 1 \ldots \mathrm{M}-3 \mathrm{X} \ldots$
		4WRL $10 \ldots 35 \mathrm{E} / \mathrm{W} \ldots \mathrm{S}-3 \mathrm{X} \ldots$
		4WRL $10 \ldots 25 \mathrm{~V} / \mathrm{V} 1 \ldots \mathrm{M}-3 \mathrm{X} \ldots-750$
		3WRCB $25 \ldots 50 \ldots \mathrm{M}-1 \mathrm{X} \ldots$

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-$ b2	Nominal $24 \mathrm{~V}=$, Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at $\mathrm{z2}$ - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{\mathrm{B}}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (pilot control valve size 6)
Current consumption, max. A	1.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37
Input signal (command value)	$\left.\begin{array}{l}\text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \text { z20: } 0 \ldots \pm 10 \mathrm{~V}\end{array}\right\}$ Differential amplifier $\left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{aligned} & \text { b30: }-15 \mathrm{~V} \\ & \text { z30: +15 V } \end{aligned}$
Pilot control valve Actual value signal	b22: $0 . . \pm \pm 10 \mathrm{~V}$
Actual value reference	b24
Main stage Actual value signal Actual value reference	b26: $0 . . . \pm 10 \mathrm{~V}$
	b28
Solenoid outputb6 - b8	Clocked current controller
	2.7 A
Cable lengths between amplifier and valve	Solenoid cable: to $20 \mathrm{~m} \mathrm{1.5mm}^{2}$ Position transducer: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$
LED displays	green: Enable yellow: Cable break actual value red: Undervoltage (U_{B} too low)
Error message - Cable break actual value - U_{B} too low - ± 15 V stabilization	z22: Open collector output to $+U_{B}$ max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	(100 x $160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.36 kg
Notice: Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).	

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Component series 2X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Commissioning
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page

1
2
2
3 - Analog amplifiers in Europe format for installation in 19" racks
4 - Controlled output stage
5 - Enable input
6 - Outputs short-circuit-proof

- Adjustment possibilities - Zero point valve

6 - Cable break detection for actual value cable

- Position control with PID behavior
- Gain in the small signal range

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For directional control valves, pilot operated, with electrical position feedback and inflected characteristic curve
VT-VRRA1-527-20/V0/K40-AGC-2STV	0811405068	4WRL 10...35 V/V1...P-3X...
		4WRL 10...25 V/V1...P-3X...-750

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-b 2$	Nominal $24 \mathrm{~V}=$, Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at $\mathrm{z} 2-\mathrm{b} 2$	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (pilot control valve size 6)
Current consumption, max. A	1.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37
Input signal (command value)	$\left.\begin{array}{l} \text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \mathrm{z} 20: 0 \ldots \pm 10 \mathrm{~V} \\ \left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right) \end{array}\right\} \quad \text { Differential amplifier }$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{aligned} & \hline \text { b30: }-15 \mathrm{~V} \\ & \text { z30: +15 V } \\ & \hline \end{aligned}$
Pilot control valve Actual value signal	b22: $0 . . . \pm 10 \mathrm{~V}$
Actual value reference	b24
Main stage Actual value signal	b26: $0 . . . \pm 10 \mathrm{~V}$
Actual value reference	b28
Solenoid outputb6 - b8	Clocked current controller
	2.7 A
Cable lengths between amplifier and valve	Solenoid cable: to $20 \mathrm{~m} \mathrm{1.}^{2} \mathrm{~mm}^{2}$ 20 to $60 \mathrm{~m}^{2} .5 \mathrm{~mm}^{2}$ Position transducer: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs, Linearization of the inflected flow characteristic curve
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$ Area adjustment of single rod cylinders, Gain in the small signal range
LED displays	green: Enable yellow: Cable break actual value red: Undervoltage (U_{B} too low)
Error message - Cable break actual value - U_{B} too low - ± 15 V stabilization	z22: Open collector output to $+U_{B}$ max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.39 kg
Notice: Power zero b2 and control zero b12 or b14	r z28 must be separately led to the central ground (neutral point).

Commissioning

1. Setting the electric and hydraulic zero point using the "zero" potentiometer.
With closed control loop, the following error displayed by the CNC is then controlled to 0 .
2. Adjustment single rod cylinder

- "S" selector switch setting on daughter card
- Comparison with direction-dependant command value attenuator with step switch K3 (coarse), with potentiometer P2 (fine).

3. Optimization of the gain in the small signal range with potentiometer P1.

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Electric amplifiers

Component series 2 X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Block diagram ramp function
Technical data
Setting information
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page

1
2 - Amplifier with additional electronics (daughter card)
2 - Analog amplifiers in Europe format for installation in 19" racks
3 - Controlled output stage
4 - Enable input
5 - Outputs short-circuit-proof
6 - Adjustment possibilities - Zero point valve
6 - Cable break detection for actual value cable

- Position control with PID behavior

7 - Ramp function

- External voltage-controlled ramp setting via differential inputs
- Ramp function that can be switched off

Notice:

The photo shows an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For directional control valves, pilot operated, with electrical position feedback and positive overlap
VT-VRPA1-527-20/V0/RTS-2STV	0811405073	4 WRL $10 \ldots 35 \mathrm{E} / \mathrm{W} \ldots-3 \mathrm{~K} \ldots$

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Functions of the daughter ramp card
Three command value inputs Acceleration - Deceleration

- External ramp time setting via voltage-controlled
differential inputs U_{T}
- Signal output "Ramp timeout" in case of $U_{E}=0$
(z18; open collector output to $+U_{A}$)
LED display on front plate
- Setting: Sensitivity
Q_{A} / Q_{B}-Limitations in the range $100 \ldots 50 \% Q_{\text {max }}$
- Automatic quadrant recognition in the transmission of the valve from one quadrant to the other one - thus only one setting potentiometer and/or one control voltage for the ramp time specification for acceleration and deceleration each.

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-$ b2	Nominal $24 \mathrm{~V}=$, Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at z 2 - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (pilot control valve size 6)
Current consumption, max. A	1.5
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37
Input signal (command value)	$\begin{aligned} & \left.\begin{array}{l} \text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \text { z20: } 0 \ldots \pm 10 \mathrm{~V} \end{array}\right\} \quad \text { Differential amplifier } \\ & \left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right) \end{aligned}$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At $\mathrm{z} 16, \mathrm{U}=8.5 . .40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Position transducer Supply	$\begin{array}{\|l} \hline \text { b30: }-15 \mathrm{~V} \\ \text { z30: }+15 \mathrm{~V} \\ \hline \end{array}$
Pilot control valve Actual value signal	b22: $0 . . \pm \pm 10 \mathrm{~V}$
Actual value reference	b24
Main stage Actual value signal Actual value reference	b26: $0 . . . \pm 10 \mathrm{~V}$
	b28
Solenoid output b6-b8	Clocked current controller
	2.7 A
Cable lengths between amplifier and valve	Solenoid cable: \quadto $20 \mathrm{~m}^{2} .5 \mathrm{~mm}^{2}$ Position transducer: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$
LED displays	green: Enable yellow: Cable break actual value red: Undervoltage (U_{B} too low $)$
Error message - Cable break actual value - U_{B} too low $- \pm 15 \mathrm{~V}$ stabilization	z22: Open collector output to $+U_{B}$ max. 100 mA ; no error: $+U_{B}$
Circuit board format mm	$(100 \times 160 \times \text { approx. } 35) /(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$ Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.44 kg
Notice: Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).	

Setting information

1. Before setting the ramps "Acceleration/Deceleration", you must first of all align $Q=0$ and $Q_{\text {max. }}$.
For that purpose, the ramp function can be switched on or off.
2. $Q 0$ is to be set in case of $0 \mathrm{~V}=U_{\mathrm{E}}$. $Q_{\text {max }}$ is to be set in case of $\pm 10 \mathrm{~V}=U_{\mathrm{E}}$.
3. Zero point calibration: For the calibration, a small command value ($U_{\mathrm{E}}=0.3 \ldots 0.5 \mathrm{~V}$) must be specified in order to ensure that the dead zone has been left.
4. Now, by means of command value changes
$0 \rightarrow 0+U_{E}$ and $+U_{E} \rightarrow 0$, you can set the desired ramp behavior
Prerequisite: No command at z14.

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 5 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electrical amplifiers for controlling high-response valves with servo-valve pilot control

Types VT-SR31 to VT-SR38

Component series 1X

Features

Amplifiers VT-SR31 to VT-SR38 are suitable for controlling high-response valves (flow control valves) with servo-valve pilot control and electrical position feedback (cartridge valves, type WRC...1X).

- Regulator for valve current

3 - Controller for main spool position
4 - Dither signal generator
5 - Push-pull output stage

- Oscillator/demodulator
- Enable circuit with relay
- Measuring instrument for indicating the servo-valve current
- Reverse polarity protection for voltage supply

Optional extensions:

- PID-controller ${ }^{1)}$ with controller changeover feature
- Relay with isolated changeover contact ($28 \mathrm{~V} / 0.5 \mathrm{~A}$)
- Voltage regulator $\pm 15 \mathrm{~V}$ for supplying the controller and position transducer electronics
${ }^{1)}$ The D-component acts only on the actual value (velocity feedback).

Ordering code

Accessories (separate order)

Card holder

- Type VT 3002-1-2X/32F, see data sheet 29928

Single card holder without power supply unit
Power supply unit

- Type VT-NE31-1X, see data sheet 29929

Compact power supply unit 115/230 VAC $\rightarrow \pm 24$ VDC, 6 W
${ }^{\text {1) }}$ only with 2WRC...1X SO56/ SO60, size 63 to 160 and 3WRC...1X SO56/ SO60, size 63 to 160
${ }^{2}$) E.g. with/without PID-controller, with/without backup relais K3
The controller data for the additional PID controller. must be specified

Function

Amplifiers VT-SR31 to VT-SR38 operate with a push-pull output stage with bipolar transistors. The output of this output stage can be cut in or out using an enable circuit (relay K2). The enable is indicated by illuminated LED "H2" on the front panel. The switching voltage of all relays is set to 0 V or $+U_{\mathrm{B}}$ with jumpers J 12 and J 13 (factory setting: $+U_{\mathrm{B}}$).
The output stage consists of an I-controller with connected dither signal generator. The amplitude of the dither signal is adjusted by means of R7. The pilot stage (current command value) is controlled using a PD-controller. The actual current value fed back is also signaled by the instrument on the front panel.
The oscillator/demodulator serves to acquire the spool position. It is designed as a plug-on printed-circuit board, the parameters of which are matched to the relevant valve type.
The position command value and the actual position value are fed to the PD-controller, with the D-component acting exclusively on the actual value (velocity feedback).
The zero point can be adjusted by means of R3 ("NP") on the front panel.

The required symmetrical operating voltage $\pm U_{\mathrm{B}}$ is protected against polarity reversal. If the printed-circuit board does not contain a voltage regulator for the supply of controller and position transducer electronics, an additional, stabilized auxiliary voltage $\pm U_{M}$ must be provided. The auxiliary voltage connection is protected against polarity reversal up to a maximum current of 1 A .
Optionally, the amplifier can be fitted with a PID-controller (D-component acts only on the actual value) with changeover PI-component and a back-up relay with isolated changeover contact. This controller can also be used to superimpose a further closed control loop (e.g. for the closed-loop control of a drive). The P- and D-component can be adjusted on the front panel. The state of the controller is signaled by LED "H1", that of the relay by LED "H3" (LEDs are ON when the relays have picked up). The component placement of the PID-controller is customer-specific and must therefore be specified in clear text in the order. These amplifiers are assigned special type designations before being shipped. The back-up relay can be loaded up to 28 V and 0.5 A .

Technical data (for applications outside these parameters, please consult us!)

Operating voltages	With voltage regulator U_{B}	$\pm 24 \mathrm{VDC}$
	Upper limit value $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {max }}$	$\pm 28 \mathrm{VDC}$
	Lower limit value $\quad u_{\mathrm{B}}(t)_{\text {min }}$	± 22 VDC
	Without voltage regulator $U_{B} ; U_{M}$	$\pm 24 \mathrm{VDC} ; \pm 15.0 \mathrm{VDC}$
	Upper limit values $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {max }} ; u_{\mathrm{M}}(\mathrm{t})_{\text {max }}$	$\pm 28 \mathrm{VDC} ; \pm 15.2 \mathrm{VDC}$
	Lower limit values $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {min }} ; u_{\mathrm{M}}(\mathrm{t})_{\text {min }}$	$\pm 22 \mathrm{VDC} ; \pm 14.8 \mathrm{VDC}$
Current consumption (without valve) at $U_{B}= \pm 24 \mathrm{~V}^{1)}$		< 150 mA
Inputs	Command value 1 (main spool position) $\quad U_{i}$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Command value 2 (main spool position) with $\mathrm{J} 9 \quad U_{i}$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Actual value (main spool position) $\quad U_{i}$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Enable $\quad U_{i}$	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
	Controller changeover feature $\quad U_{i}$	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
	Back-up relay U_{i}	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
Outputs	Regulated output voltage ${ }^{1)} \quad U_{M}$	$\pm 15 \mathrm{~V} \pm 2$ \%; 150 mA
	Valve current $I_{\text {max }}$	$\pm 60 \mathrm{~mA}$
	Valve current command value (with J10) U_{0}	$\pm 10 \mathrm{~V} \triangleq \pm 60 \mathrm{~mA}$ (measurement output at Pin 28a)
	Relay call-up voltage U	$+24 \mathrm{~V}\left(+U_{\mathrm{B}}\right)$
Dither signal		$340 \mathrm{~Hz} \pm 5 \%\left(I_{\text {ss }}=3 \mathrm{~mA}\right)$
Oscillator frequency		5 kHz
Relay data	Nominal voltage U	+26 V
	Response voltage U	$>13 \mathrm{~V}$
	Release voltage U	1.3 V to 6.5 V
	Switching time t t	$<4 \mathrm{~ms}$
	Coil resistance (at $25^{\circ} \mathrm{C}$) R	700Ω
	Contact load I	0.5 A
Type of connection		32-pin male connector, DIN 41612, form D
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions	Height	3 HE (128.4 mm)
	Width soldering side	$1 \mathrm{TE}(5.08 \mathrm{~mm})$
	Width component side	7 TE
Permissible ambient temperature range J		0 to $+50^{\circ} \mathrm{C}$
Storage temperature range		-20 to $+70^{\circ} \mathrm{C}$
Weight m		0.3 kg

[^20]Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

- The amplifier card may only be plugged or withdrawn when disconnected from the power supply!
- Use only relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- For switching card relays (enable, controller changeover, reserve) use only contacts with a load carrying capacity of ca. $40 \mathrm{~V} ; 50 \mathrm{~mA}$.
- Always shield command value cables; connect the shield to ground (\perp) on the card side and leave the other end open!
- Do not lay signal cables near power cables!
- Recommendation: 1. Shield also solenoid cables (connect one end to \perp)!

2. Up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$; for greater lengths, please consult us!

- Attention: Relay K2 may only be switched off, when the servo-valve is adjusted by means of a trimming potentiometer to ensure that the main stage of the WRC valve brings the actuator to a safe end position! If the servo-valve is not appropriately adjusted, the position of the main stage control spool is not defined when relay K2 is switched off!

Note: \quad Electrical signals (e.g. actual value) brought out via control electronics must not be used for switching safety-relevant machine functions!
(See also European standard "Safety requirements for fluid power systems and components - hydraulics", EN 928.)
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Electrical amplifiers for controlling high-response valves with servo-valve pilot control

Types VT-SR41 to VT-SR43

Component series 1X

Table of contents

Content

Features

Ordering code
Function
Block circuit diagram / pinout
Technical data
Unit dimensions
Engineering / maintenance notes / supplementary information 5

Features

Amplifiers VT-SR41 to VT-SR43 are suitable for controlling high-response valves (flow control valves) with servo-valve pilot control and electrical position feedback (cartridge valves, type WRC...2X).

- Regulator for valve current
- Controller for main spool position
- Dither signal generator
- Push-pull output stage
- Oscillator/demodulator
- Enable circuit with relay
- Measuring instrument for indication of the servo-valve current
- Reverse polarity protection for voltage supply

Optional extensions:

- PID-controller ${ }^{1)}$ with controller changeover feature
- Relay with isolated changeover contact ($28 \mathrm{~V} / 2 \mathrm{~A}$)
- Voltage regulator $\pm 15 \mathrm{~V}$ for supplying the controller and position transducer electronics
${ }^{1)}$ The D-component acts only on the actual value (velocity feedback).

Ordering code

(10 to 19: unchanged technical data and pinout)

Accessories (separate order)
${ }^{1)}$ E.g. with/without PID-controller, with/without back-up relay K3
Controller data must be specified for the additional PID-controller.

Card holder

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply unit
Power supply unit

- Type VT-NE31-1X, see RE 29929

Compact power supply unit 115/230 VAC $\rightarrow \pm 24$ VDC, 7 VA

Function

Amplifiers VT-SR41 to VT-SR43 operate with a push-pull output stage with bipolar transistors. The output of this output stage can be cut in and out with an enable circuit (relay K2). The enable is signaled by LED "H2" on the front panel. The switching voltage of all relays is set to 0 V or $+U_{\mathrm{B}}$ by means of jumpers J 12 and J 13 (factory setting: $+U_{\mathrm{B}}$).
The output stage consists of an I-controller with connected dither signal generator. The amplitude of the dither signal can be adjusted by means of R7. The pilot stage (current command value) is controlled via a PD-controller. The actual value fed back is indicated by the instrument on the front panel.
The oscillator/demodulator serves to acquire the spool position. It is designed as a plug-on printed-circuit board, the parameters of which are adapted to the relevant valve type.
The PD-controller receives the position command value and the actual position value, with the D-component being effective exclusively on the actual value (velocity feedback).
The zero point can be adjusted by means of R3 ("NP") on the front panel.

The required symmetrical operating voltage $\pm U_{B}$ is protected against polarity reversal. If the printed-circuit board does not include a voltage regulator for supplying the controller and the position transducer electronics, an additional, stabilized auxiliary voltage $\pm U_{M}$ must be made available. The auxiliary voltage connection is protected against polarity reversal up to a maximum current of 1 A .
Optionally, the amplifier can be fitted with a PID-controller (Dcomponent acts only on the actual value) with PI-component that can be changed over and a back-up relay with isolated changeover contact. This controller can be used for superimposing a further control loop (e.g. for closed-loop drive control). The P- and D-component can be adjusted on the front panel. The state of the controller is signaled by LED "H1", that of the relay by LED "H3" (LEDs are ON when the relays have picked up). The component placement of the PID-controller is customer-specific and must therefore be specified in clear text in the order. A special type designation is assigned to these amplifiers before shipment. The back-up relay can be loaded up to 28 V and 2 A .

Technical data (for applications outside these parameters, please consult us!)

Operating voltages:	With voltage regulator U_{B}	$\pm 24 \mathrm{VDC}$
	Upper limit value $\quad u_{B}(t)_{\text {max }}$	± 28 VDC
	Lower limit value $\quad u_{B}(t)_{\text {min }}$	$\pm 22 \mathrm{VDC}$
	Without voltage regulator $\quad U_{B} ; U_{M}$	$\pm 24 \mathrm{VDC} ; \pm 15.0$ VDC
	Upper limit values $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {max }} ; u_{\mathrm{M}}(\mathrm{t})_{\text {max }}$	± 28 VDC; $\pm 15.2 \mathrm{VDC}$
	Lower limit values $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {min }} ; u_{\mathrm{M}}(\mathrm{t})_{\text {min }}$	$\pm 22 \mathrm{VDC} ; \pm 14.8 \mathrm{VDC}$
Current consumption (without valve) at $U_{\mathrm{B}}= \pm 24 \mathrm{~V}^{1)}$		< 150 mA
Inputs:	Command value 1 (main spool position) U_{i}	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Command value 2 (main spool position) with J9	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Actual value (main spool position) $\quad U_{i}$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{i}}=50 \mathrm{k} \Omega\right)$
	Enable $\quad U_{i}$	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
	Controller changeover feature $\quad U_{i}$	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
	Back-up relay U_{i}	+24 V (with J13); 0 V (with J12), $R_{\mathrm{i}}=700 \Omega$ (relay circuit)
Outputs:	Regulated output voltage ${ }^{1)} \quad U_{M}$	$\pm 15 \mathrm{~V} \pm 2$ \%; 150 mA
	Valve current $\quad I_{\text {max }}$	$\pm 60 \mathrm{~mA} / \pm 100 \mathrm{~mA}$ (depending on valve size)
	Valve current command value (with J 10$) U_{0}$	$-10 \mathrm{~V} \hat{=}+60 \mathrm{~mA} /+100 \mathrm{~mA}$ (measurement output)
	Relay call-up voltage U	$+24 \mathrm{~V}\left(+U_{B}\right)$
Dither signal		$380 \mathrm{~Hz} \pm 5 \%\left(I_{\text {SS }}=0.42 \mathrm{~mA}\right)$
Oscillator frequency		5 kHz
Relay data:	Nominal voltage U	+26 V
	Response voltage U	$>13 \mathrm{~V}$
	Release voltage U	1.3 V to 6.5 V
	Switching time t	$<4 \mathrm{~ms}$
	Coil resistance (at $25^{\circ} \mathrm{C}$) R	700Ω
Type of connection		32-pin male connector, DIN 41612, form D
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions:	Height	3 HE (128.4 mm)
	Width soldering side	1 TE (5.08 mm)
	With component side	7 TE
Permissible ambient temperature range J		0 to $+50^{\circ} \mathrm{C}$
Storage temperature range		-20 to $+70^{\circ} \mathrm{C}$
Weight m		0.3 kg

[^21]Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

- The amplifier card may only be plugged or withdrawn when disconnected from the power supply!
- Use only relays with gold-plated contacts for passing on command values (small voltages, small currents)!
- For switching card relays (enable, controller changeover, reserve) use only contacts with a load carrying capacity of ca. $40 \mathrm{~V} ; 50 \mathrm{~mA}$.
- Always shield command and actual value cables; connect the shield to ground (\perp) on the card side and leave the other end open!
- Do not lay signal cables near power cables!
- Recommendation: 1. Shield also solenoid cables (connect one end to \perp)!

2. Up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$; for greater lengths, please consult us!

- Attention: Relay K2 may only be switched off, when the servo-valve is adjusted by means of a trimming potentiometer to ensure that the main stage of the WRC valve brings the actuator to a safe end position! If the servo-valve is not appropriately adjusted, the position of the main stage control spool is not defined when relay K2 is switched off!

Note: Electrical signals (e.g. actual value) brought out via control electronics must not be used for switching safety-relevant machine functions!
(See also European standard "Safety requirements for fluid power systems and components - hydraulics", EN 928.)

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Rexroth

Bosch Group

Analog amplifier module

Type VT 11021

Component series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Block circuit diagram / pin assignment
Technical data
Terminal assignment
Unit dimensions
Engineering / maintenance notes / supplementary information 4

Features

- Suitable for controlling servo-valves with mechanical feedback, type 4WS2EM... (sizes 6 and 10)
- Differential input $\pm 10 \mathrm{~V}$
- Dither signal generator
- U/I transformer (short-circuit-proof against 0 V)
- DC/DC converter
- Reverse voltage protection
- Signalling of internal supply voltage by LED

Ordering code

Functional description

The amplifier module is to be snapped onto a hat rails according to EN 60715. It is electrically connected by means of screw terminals. The module is powered by 24 V DC voltage. The $\pm 10 \mathrm{~V}$ command value is applied to the differential input. The output current of the downstream U/I transformer controls the servo-valve.
The following parameters can be adjusted externally using trimming potentiometers Gw, Zw and G_{D} :

- The max. output current between approx. 10 and 110% by means of "Gw"
- The offset current between $+10 \%$ and -10% of the max. output current by means of "Zw"
- The amplitude of the dither signals between 0 and 10% of the maximum output current by means of " G_{D} "

Block circuit diagram / pin assignment

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC +40\%-10 \%
Operating range:		
- Upper limit value	$u_{0}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	21 V
Current consumption (without valve) at $U_{0}= \pm 24 \mathrm{~V}$	$I_{\text {max }}$	300 mA
Power consumption	$P_{\text {S }}$	approx. 8 VA
Fuse		Thermal overload fuse (with reactive function when temperature falls below the threshold)
Inputs:		
- Command value	$U_{\text {comm }}$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}} \geq 20 \mathrm{k} \Omega\right)$
Outputs:		
- Valve current	$I_{\text {max }}$	$\pm 60 \mathrm{~mA}+10 \%$
- Measuring sockets		
- Current command value "w"	$U_{\text {w }}$	0 to $\pm 10 \mathrm{~V}$
- Actual current value "I"	$U_{\text {act }}$	0 to $\pm 600 \mathrm{mV}(10 \mathrm{mV} \xlongequal{ }$ ¢ 1 mA$)$
Dither signal:		
- Frequency	f	$340 \mathrm{~Hz} \pm 10$ \%
- Amplitude	$I_{\text {SS }}$	0 to 6 mA (factory setting 3 mA)
Type of connection		6 screw terminals
Type of mounting		Hat rail TH35-7.5 according to EN 60715
Type of protection		IP 20 to EN 60529
Dimensions (W $\mathrm{WH} \times \mathrm{D}$)		$25 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range	ϑ	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-20 to $+70{ }^{\circ} \mathrm{C}$
Weight	m	0.13 kg

Terminal assignment

Unit dimensions

Engineering / maintenance notes / supplementary information

- The amplifier module may only be wired when disconnected from the power supply!
- The distance to radio equipment must be sufficiently large ($\gg 1 \mathrm{~m}$)!
- Shield command value cables; do not lay them near power cables!
- Do not use free-wheeling diodes in the solenoid cables!
- In the case of a strong fluctuations in the operating voltage, it may become necessary to install an external smoothing capacitor having a capacitance of at least $2200 \mu \mathrm{~F}$.
Recommendation: Capacitor module VT 11110 (see RE 30750); sufficient for up to 3 amplifier modules

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Electrical amplifier for the control of servo valves with electrical position feedback

Type VT-SR1

Series 1X

Table of contents

Contents

Features
Ordering code
Function
Technical data
Block circuit diagram / connection allocation
Engineering / maintenance guidelines / additional information
Unit dimensions

Features

The amplifier VT-SR1 is suitable for the control of 2-stage servo valves with electrical position feedback (type 4WS2EE ...).

- Valve current controller
- Main spool position controller
- Dither signal generator
- Inverse pulsed output stage
- Oscillator/demodulator
- Enable circuit using relays
- Measuring instrument for displaying the servo valve current
- Polarity protection for the supply voltage

Optional accessories:

- PID controller ${ }^{1)}$ with controller switching
- Relay with a potential free 2-way contact ($28 \mathrm{~V} / 2 \mathrm{~A}$)
- Voltage controller $\pm 15 \mathrm{~V}$ for the controller and position transducer electronics
${ }^{1)}$ The D component only acts on the actual value (velocity feedback).

Ordering code

Suitable card holders:

2) E.g. With/without PID controller, with/without reserve relay K3
For the additional PID controller, the controller technical data must be stated.

- Type VT 3002-2X/32, see RE 29928

Single card holder without power supply

Suitable power supply:

- Type VT-NE31-1X, see RE 29929

Compact power supply unit 115/230 VAC $\rightarrow \pm 24$ VDC, 7 VA

Function

The amplifier VT-SR1 operates using an inverted pulse output stage with bipolar transistors. The output from this output stage may be switched on and off by means of an enable circuit (relay K2). The enable is indicated by the lighting up of LED ${ }{ }^{H} \mathrm{H}^{4}$ on the front plate. The switching voltage for all relays is set to either 0 V or $+U_{\mathrm{B}}$ using jumpers J12 and J13 (works setting $+U_{\mathrm{B}}$).
The output stage comprises of an I controller with connected dither signal generator. The amplitude of the dither signal is set using R7. A PD controller is used to control the pilot stage (command value current). The actual value current feedback is displayed at the same time by the instrument on the front plate.
The oscillator/demodulator is used to determine the spool position. It is designed as a plug-in card. The parameters of which are matched to the corresponding valve type.
The command value position and the actual value position are fed to the PD controller. The D component only effects the actual value (velocity feedback).
The zero point may be set on the front plate by means of R3 ("NP").

The necessary symmetrical operating voltage $\pm U_{\mathrm{B}}$ is protected against reverse polarity. If the card does not include a voltage controller to supply the closed loop controller and position transducer electronics, then an additional stabilised auxiliary voltage $\pm U_{M}$ must be available. The auxiliary voltage connection is protected against reverse polarity up to a maximum current of 1 A .
The amplifier may be optionally equiped with a PID controller (the D component only effects the actual value signal) with selectable Pl component and a reserve relay with a potential free 2 -way switch. Using this controller, an additional closed loop control circuit (e.g. for a closed loop drive control) may be superimposed. The P and D components may be set on the front plate. The switched status of the controller is displayed by LED "H1" and the relay by LED "H3" (the LED's lights up when the relay is closed). The PID controller is set up in accordance with the customer specifications and hence must be stated in clear text on the order. These amplifiers are allocated a special type code on delivery. The reserve relay may be loaded up to 28 V and 2 A .

Technical data (for applications outside these parameters, please consult us!)

Operating voltages:	
With voltage controller U_{B}	$\pm 24 \mathrm{VDC}$
- Upper limiting value $\quad u_{B}(t)_{\text {max }}$	$\pm 28 \mathrm{VDC}$
- Lower limiting value $u_{\mathrm{B}}(t)_{\text {mir }}$	$\pm 22 \mathrm{VDC}$
Without voltage controller $U_{B} ; U_{N}$	$\pm 24 \mathrm{VDC} ; \pm 15.0 \mathrm{VDC}$
- Upper limiting value $\quad u_{B}(t)_{\text {max }} ; u_{M}(t)_{\text {max }}$	± 28 VDC; $\pm 15.2 \mathrm{VDC}$
- Lower limiting value $\quad u_{\mathrm{B}}(\mathrm{t})_{\text {min }} ; u_{\mathrm{M}}(\mathrm{t})_{\text {min }}$	± 22 VDC; ± 14.8 VDC
Current consumption (without valve) at $U_{\mathrm{B}}= \pm 24 \mathrm{~V}{ }^{1}$)	< 150 mA
Inputs:	
- Command value 1 (main spool position) $\quad U$	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
- Command value 2 (main spool position) with J9 U	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
- Actual value (main spool position) U	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
- Enable U	+24 V with J13; 0 V with J12 ($R_{\mathrm{e}}=700 \Omega$; relay circuit)
- Controller switching U	+24 V with $\mathrm{J} 13 ; 0 \mathrm{~V}$ with $\mathrm{J} 12\left(R_{\mathrm{e}}=700 \Omega\right.$; relay circuit)
- Reserve relay U	+24 V with J13; 0 V with J12 ($R_{\mathrm{e}}=700 \Omega$; relay circuit)
Outputs:	
- Stabilised output voltage ${ }^{1)} U_{\text {M }}$	$\pm 15 \mathrm{~V} \pm 2$ \%; 150 mA
- Valve current $I_{\text {max }}$	$\pm 60 \mathrm{~mA}$
- Command value valve current (with J10) U	$-10 \mathrm{~V} \wedge+60 \mathrm{~mA}$ (measuring output)
- Relay selection voltage	+24 V ($+\mathrm{U}_{\mathrm{B}}$)
Dither signal	$340 \mathrm{~Hz} \pm 5 \%\left(I_{\text {SS }}=3 \mathrm{~mA}\right)$
Oscillator frequency	$2.5 \mathrm{kHz} / 5 \mathrm{kHz}$ (dependent on the valve type)
Relay data:	
- Nominal voltage	+26 V
- Response voltage	$>13 \mathrm{~V}$
- Release voltage	1.3 V to 6.5 V
- Switching time	$<4 \mathrm{~ms}$
- Coil resistance (at $25^{\circ} \mathrm{C}$)	700Ω
Connection type	32-pin blade connector, DIN 41612, form D
Card dimensions	Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Front panel dimensions:	
- Height	$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width, conductor side	$1 \mathrm{TE}(5.08 \mathrm{~mm})$
- Width, component side	7 TE
Permissible ambient temperature range	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	-20 to $+70^{\circ} \mathrm{C}$
Weight m	0.3 kg

[^22]
(F) On front panel

Engineering / maintenance guidelines / additional information

- The amplifier card must only be removed or inserted when de-energised!
- Command value signals must only be switched using relays with gold plated contacts (small voltages, small currents)!
- Only use contacts with a loadability of approx. $40 \mathrm{~V} ; 50 \mathrm{~mA}$ for switching card relays (enable, controller switching, reserve).
- Always screen the command and actual value cables; leave one end of the screen open, connect on the card side to ground (\perp)!
- Do not lay signal cables in the vicinity of power cables!
- Recommendations: 1. Also screen the solenoid cables (connect one end to \perp)!

2. Use cable type LiYCY $1.5 \mathrm{~mm}^{2}$ for lengths up to 50 m long. Longer lengths on request!

Note: Electrical signals (e.g. actual value) taken via valve electronics must not be used to switch off the machine safety functions!
(This is in accordance with the regulations to the European standard "Safety requirements of fluid technology systems and components - hydraulics", prEN 982.)

Unit dimensions (dimensions in mm)

Notes

(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analogue amplifier

Type VT-SR2

Series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Technical data
Block circuit diagram / pin assignment
Unit dimensions
Engineering / maintenance notes / supplementary information

Features

- Suitable for controlling single and two-stage servo-valves without electrical position feedback (types 4WS2EM 6, 4WS2EM 10., 4WS2EM 16., 4WS2EB 10., 4DS1EO 2 and 3DS2EH 10)
- Regulator for valve current
- Dither signal generator
- Push-pull output stage
- Enable circuit with relay
- Measuring instrument for displaying servo-valve current
- Reverse polarity protection for voltage supply
- Optional extensions:
- PID-controller ${ }^{1)}$ with controller changeover
- Relay with potential-free changeover contact ($28 \mathrm{~V} / 2 \mathrm{~A}$)
- Voltage regulator $\pm 15 \mathrm{~V}$ for supplying the closed-loop control electronics
${ }^{1)}$ The D-components act on the actual value only.

Suitable Card holders:

- Type VT 3002-2X/32, see RE 29928

Single card holder, without power supply unit

Suitable Power supply unit:

- Type VT-NE31-1X, see RE 29929

Compact power supply unit 115/230 VAC $\rightarrow \pm 24$ VDC, 7 VA

Ordering code

Without voltage regulator $\pm 15 \mathrm{~V}$	$=0$
With voltage regulator $\pm 15 \mathrm{~V}$	$=1$

Functional description

VT-SR2 amplifiers operate with a push-pull output stage with bipolar transistors. The output of this output stage can be activated or deactivated using an enable circuit (relay K2). The enable is indicated by lighting up of the LED " H 2 " on the front panel. The switching voltage of all relays is set to either 0 V or $+U_{\mathrm{O}}$ (factory setting $+U_{0}$) by means of jumpers J 12 and J 13 . The output stage consists of an I-controller with connected dither signal generator. The amplitude of the dither signal can be adjusted using R7. The input stage (current command value) is controlled by a PD-controller. The actual current value fed back is indicated on an instrument on the front panel.
The position command value is fed to the PD-controller, with the D -component acting only on input 3 .
The valve zero point can be adjusted from the front panel using R3 ("NP").

The required symmetric operating voltage $\pm U_{O}$ is protected against reverse polarity. For the version without voltage regulator, an additional stabilised auxiliary voltage $\left(\pm U_{M}\right)$ must be provided to supply the controller electronics. The auxiliary voltage connection is protected against reverse polarity up to a maximum current of 1 A .
Optionally, the amplifier can be fitted with a PID-controller (D-component acts only on the actual value), with the PI-component being able to be changed over, and a reserve relay with potential-free changeover contact. This controller can be used to superimpose a further closed control loop (e.g. for drive control). The P - and D -component can be adjusted on the front panel. The control state of the controller is signalled by LED "H1", that of the relay by LED " H 3 " (LEDs light up when relays are picked up). The PID-controller configuration is customised and must therefore be indicated in clear text on the order. When dispatched, a special type designation is assigned to the amplifier. The reserve relay may be loaded up to 28 V and 2 A .

Technical data (for applications outside these parameters, please consult us!)

${ }^{1)}$ Only for version with voltage regulator

Engineering / maintenance notes / supplementary information

- The amplifier may only be plugged or unplugged when disconnected from the power supply!
- Command values may only be switched via relays with gold-plated contacts (small voltages, small currents)!
- For switching card relays (enable, controller changeover, reserve) use only contacts with a load-carrying capacity of ca. $40 \mathrm{~V}, 50 \mathrm{~mA}$.
- Always shield command value and actual value cables; leave one end of shield open and connect the card-sided end to the ground (\perp)!
- Do not lay signal cables near power cables!
- Recommendation: Also shield solenoid cables!

For solenoid cable lengths up to 50 m , use cable type LiYCY $1.5 \mathrm{~mm}^{2}$.
For greater lengths, please consult us!

Notes

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) 9352 / 18-23 58
documentation@boschrexroth.de www.boschrexroth.de

C This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Analog amplifier

Type VT-SR11

Component series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Block diagram/Pinout
Technical data
Unit dimensions
Project planning/Maintenance instructions/
Additional information

Features

Page
1
2
2
3
3
4
5

- Measuring instrument fro display of servo valve flow
- Reverse polarity protection for the voltage supply

Optional extensions:

- PID controller ${ }^{1)}$ with controller change-over
- Relay with potential-free changeover contact ($28 \mathrm{~V} / 0.5 \mathrm{~A}$)
- Voltage regulator $\pm 15 \mathrm{~V}$ for supply of controller and position transducer electronics
${ }^{1)}$ The D share of the controller only affects the actual value (velocity feedback).

Ordering code

Accessories

Card holder

- Type VT 3002-2X/32, see data sheet 29928
single card holder without mains adapter

Functional description

The amplifier VT-SR11 operates with a push-pull output stage with bipolar transistors. The output of this output stage can be connected or disconnected by means of a release circuit (relay K2). The release is indicated by the LED " H 2 " on the front panel being illuminated. The switching voltage of all relays is defined by means of the jumpers J 12 and J 13 to either 0 V or $+U_{B}$ (factory setting $+U_{B}$).
The output level consists of an I controller with connected dither signal generator. The amplitude of the dither signal is set by means of R7. The actuation of the pre-stage (current command value) is made via a PD controller. The current actual value returned is at the same time displayed by the instrument on the front panel.
The oscillator/demodulator serves for sensing of the spool position. It is designed as pluggable board the parameters of which are adapted to the respective valve type.
The PD controller is supplied the position command value and the position actual value with the D share of the controller only affecting the actual value (velocity feedback).
The zero point can be set via R3 ("NP") from the front panel.

The required symmetric operating voltage $\pm U_{B}$ is protected against reverse polarity. If the board does not have any voltage regulators for supply of the controller and position transducer electronics, an additional stabilized auxiliary voltage $\pm U_{\mathrm{M}}$ has to be provided. The auxiliary voltage port is protected against reverse polarity up to a maximum current of 1 A .
As an option, the amplifier can be equipped with a PID controller (D share only affects the actual value) with selectable PI share and a backup relay with potential-free changeover contact. This controller can be used to superimpose a further control circuit (e.g. for drive control). The P and D share can be set at the front panel. The controller switching status is indicated by the LED "H1", the relay at LED "H3" (LEDs illuminated if relays are applied). The PID controller fitting is customer specific and therefore has to specified in the order in the plain text. These amplifiers receive a special type designation upon delivery. The backup relay is loadable up to 28 V and 0.5 A .
ио!!əәииоэ дәэnpsueл uo!!!sod pue p!̣оиәоs

Technical Data (For applications outside these parameters, please consult us!)

Operating voltages	
with voltage regulator U_{B}	$\pm 24 \mathrm{VDC}$
upper limit value $u_{\mathrm{B}}(t)_{\text {max }}$	$\pm 28 \mathrm{VDC}$
lower limit value $\quad u_{\mathrm{B}}(t)_{\text {min }}$	$\pm 22 \mathrm{VDC}$
without voltage regulator $U_{B} ; U_{M}$	$\pm 24 \mathrm{VDC} ; \pm 15.0 \mathrm{VDC}$
upper limit values $\quad u_{\mathrm{B}}(\mathrm{t})_{\max } ; u_{\mathrm{M}}(\mathrm{t})_{\max }$	$\pm 28 \mathrm{VDC} ; \pm 15.2 \mathrm{VDC}$
lower limit values $\quad u_{B}(t)_{\text {min }} ; u_{M}(t)_{\text {min }}$	$\pm 22 \mathrm{VDC} ; \pm 14.8$ VDC
Current consumption (without valve) for $U_{B}= \pm 24 \mathrm{~V}^{1)}$	$<150 \mathrm{~mA}$
Inputs	
Command value 1 (main spool position) U_{e}	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
Command value 2 (main spool position) by means of J 9	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
Actual value (main spool position) U_{e}	0 to $\pm 10 \mathrm{~V}\left(R_{\mathrm{e}}=50 \mathrm{k} \Omega\right)$
Enable U_{e}	+24 V with J13; 0 V with J 12 ($\mathrm{R}_{\mathrm{e}}=700 \Omega$; relay circuit)
Controller change-over U_{e}	+24 V with J13; 0 V with J 12 ($R_{\mathrm{e}}=700 \Omega$; relay circuit)
Backup relay U_{e}	+24 V with J13; 0 V with J 12 ($R_{\mathrm{e}}=700 \Omega$; relay circuit)
Outputs	
controlled output voltage ${ }^{1)} \quad U_{N}$	$\pm 15 \mathrm{~V} \pm 2$ \%; 150 mA
Valve flow $I_{\text {max }}$	$\pm 60 \mathrm{~mA}$
Valve flow command value (by means of J 10) $U_{\text {a }}$	$-10 \mathrm{~V} \xlongequal{\wedge}+100 \mathrm{~mA}$ (measuring output)
Relay pickup voltage	$+24 \mathrm{~V}\left(+U_{\mathrm{B}}\right)$
Dither signal	$470 \mathrm{~Hz} \pm 5$ \%
Oscillator frequency	5 kHz
Relay data	
Nominal voltage	+26 V
Response voltage	> 13 V
Step-back voltage	1.3 V to 6.5 V
Switching time	$<4 \mathrm{~ms}$
Coil resistance (for $25^{\circ} \mathrm{C}$)	700Ω
Contact load	0.5
Type of connection	32-pole male multipoint connector, DIN 41612, design D
Card dimensions	Euro board $100 \times 160 \mathrm{~mm}$; DIN 41494
Front plate dimensions	
Height	3 HE (128.4 mm)
Broad soldering side	1TE (5.08mm)
Broad component side	7 TE
admissible ambient temperature range	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	-20 to $+70{ }^{\circ} \mathrm{C}$
	0.3 kg

[^23]
Unit dimensions

Project Planning/Maintenance Instructions/Additional Information

- The amplifier card may only be unplugged and plugged when de-energized!
- Command values may only be switched via relays with gold contacts (low voltage, low currents)!
- Card relays may only be switched (enable, controller change-over, reserve) using contacts with a load capacity of approx. 40 V ; 50 mA .
- Always shield command and actual value lines; Connect shielding to ground (\perp) on the card-side, open at one side!
- Do not lay signal lines close to power cables!
- Recommendation 1. Do also shield solenoid lines (one-sided to \perp)!

2. Up to 50 m length, use cable type LiYCY $1.5 \mathrm{~mm}^{2}$, for higher lengths please ask!

Note Electric signals taken out via control electronics (e.g. actual value) must not be used for switching of safety-relevant machine functions! (See also the European standard "Safety requirements for fluid power systems and their components - Hydraulics", EN 982.)

Note for V002 version

The project planning information in data sheet 29094-XN-B2 must be complied with.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Plug-in switching amplifier

Type VT-SSV-1

Series 2X

Table of contents

Contents

Features
Ordering code
Block circuit diagram / pin allocation
Technical data
Unit dimensions
Project / maintenance instructions / additional information

Features

- Suitable for control of switching valves with direct current solenoid operation through signals with low control power
- Activation can carried out direct with the switch output signals of an open loop control
- Output with constant short circuit protection
- Status indication of switching condition with LED

Ordering code

Block circuit diagram / pin allocation

Operating voltage on terminal ${ }^{\prime} U_{+}{ }^{"}(24 \mathrm{~V})$ and ${ } \perp^{"}$ (GND)
Control voltage on terminal "IN" and " $\perp^{"}$ (GND)
Protective ground on terminal „PE"

1 Connecting terminals
2 Electronic switch
3 LED for status indication
4 Solenoid contacts

Technical Data (For application outside these parameters please consult us!)

Operating voltage	U_{+}	24 VDC +20\%-10 \% (residual ripple < 15 \%)
Output current	$I_{\text {max }}$	2 A (at 100% duty)
Output voltage	$U_{\text {max }}$	$U_{+}-0.2 \mathrm{~V}$ (typical at 2 A)
Control voltage:		
-ON	$U_{\text {IN }}$	10 to 35 VDC
-OFF	$U_{\text {IN }}$	0 to 6 VDC
Control current	IN	$\leq 3 \mathrm{~mA}$
Switching frequency	$t_{\text {max }}$	approx. 4 Hz
Cable connection:		Screw-type terminals max. $1.5 \mathrm{~mm}^{2}$
-Fitting		Pg 11
-External cable diameter	d	4 to max. 10 mm
Solenoid connection		Plug-in connector 2-pin + PE, EN 175301-803 (Z5L)
Connection cable (recommendation)		H05VV-F 4G1,5 (not included in delivery)
Permisible operating temperature range	ϑ	-25 to $+70^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-25 to $+70^{\circ} \mathrm{C}$
Weight	m	ca. 45 g

Note:

For details regarding environmental simulation test for the areas of EMC (electro-magnetic compatibility), climate and mechanical loading see RE 30 262-U (explanation regarding environmental compatibility).

Unit dimensions (dimensions in mm)

Project / maintenance instructions / additional information

- The amplifier is integrated into a plug-in connector Z5L to EN 175301-803 with transparent cover. For the operation a terminal lead with 3 wires is necessary. With a lead with four wires the protective conductor can also be connected.
Cable recommendation: H05VV-F 4G1,5
- On mounting the housing can be rotated by 90° steps.
- When overloading or short circuit occurs the output is switched off. Before switching back on the control signal $U_{\mathbb{I N}}$ must be switched to "OFF" ($\leq 6 \mathrm{~V}$).
- The switching off times may be doubled or trebled because of the limitation of the negative switching off voltage peak.
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The given information does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Plug-in switching amplifier

Type VT-SSBA1

RE 30362

Edition: 2013-01
Replaces: 2011-08

Features

- Control of hydraulic on/off valves with 12 V solenoids which are to be switched fast (fast switching amplifier)
- Energy saving due to power reduction when controlling hydraulic on/off valves with 24 V solenoids (power reducer)
- Suitable for controlling on/off valves of type WE6 and WE10 with 12 V or 24 V DC solenoids
- Potted-in cable with open end
- 3-conductor connection, power supply and release separated
- Short-circuit proof output
- Status display of the switching status by LED
- Component series 1 X

C ϵ

Table of contents

Features 1

Ordering code 2
Functional description 2
Functional diagram 3
Technical data 3
Block diagram / pinout 4
Unit dimensions 4
Project planning / maintenance instructions / additional information

Bestellangaben

01	Plug-in switching amplifier with pulse width modulation (PWM)	VT-SSBA1-PWM
02	Component series 10 to 19 (10 to 19: Unchanged installation and connection dimensions)	1X
03	Variant	
	Power reduction after 100 ms	V001
	Power reduction after 300 ms	V002
04	Cable length in m	5
05	Further details in the plain text	*

Allocation of the ampifier varaiants to the valves types

Valve type WE6...6X					
Control spool	24 V solenoid (power saving)		12 V solenoid (fast switching)		
	Ampifier variant	Power consumption	Ampifier variant	Switching time "on"	Switching time "off"
E	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	23 ms	20 ms
D (Y)	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	24 ms	17 ms
C (Y11)	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	24 ms	17 ms
G	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	20 ms	14 ms
J	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	19 ms	17 ms
L	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	19 ms	23 ms
M	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	29 ms	29 ms
X7	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	64 ms	16 ms
E67	VT-SSBA1-PWM-1X/V002	18 W	VT-SSBA1-PWM-1X/V001	17 ms	13 ms

Weitere Ventile auf Anfrage.

Functional description

The VT-SSBA1 switching amplifier is directly mounted on the valve's K4 connector.
It is supplied with 24 V direct voltage. If a high signal is applied to wire no. 2 (release "IN"), the voltage profile is applied to the valve according to the functional diagram. As soon as the release input is switched, the "yellow" status display LED lights up.

Fast switching amplifier

As fast switching amplifier, the VT-SSBA1 considerably reduces the switching time of standard directional valves in connection with 12 V solenoid coils.

The use of a plug-in switching amplifier may, in dependence on the individual control spool, result in an improvement with regard to the performance limit. Further information on request.

Upon activation, there is an overexcitation of the solenoid by 100% with 24 V . Then, the voltage is reduced and the necessary holding current is set via the pulse width modulation.

Power reducer (Power saving)

As power reducer, the switching amplifier considerably reduces the holding current when using 24 V standard directional valves.
After activation, the rated voltage of 24 V for switching the valve is changed to pulse width modulation and in this way, the power is considerably reduced.
The above table contains the allocation of the valves to the VT-SSBA1-PWM-1X/V001 and VT-SSBA1-PWM-1X/V002 switching amplifiers.

Functional diagram

Technical data (For applications outside these parameters, please consult us!)

General	m	Approx. 350 g (incl. cable)
Weight		Valve connector for K4 connector
Housing	ϑ	-25 to $+70^{\circ} \mathrm{C}$
Ambient temperature range	ϑ	-20 to $+60^{\circ} \mathrm{C}$
Max. operating temperature	ϑ	-20 to $+60^{\circ} \mathrm{C}$
Storage temperature range		

Electric 1)		
Voltage type		Direct voltage
Operating voltage (nominal voltage)	U_{B}	$24 \mathrm{~V} \pm 10$ \%
Holding current	$I_{\text {max }}$	2 A
Control voltage (release "IN")		
- ON	$U_{\text {IN }}$	10 to 30 V
- OFF	$U_{\text {IN }}$	< 3.5 V
Galvanic separation		No
Control current (release)	$I_{\text {IN }}$	2.5 to 12 mA
Switch-on repetition rate	f	$\leq 1 \mathrm{~Hz}$
Switching frequency	$f_{\text {max }}$	PWM operation 300 to 500 Hz
Protection class according to EN 60529		IP 65, IP 67
Cable connection		Potted-in cable with open end
Cable type		See table below
Switch-on duration		
- V001	t	100 to 115 ms
- V002	t	300 to 315 ms
Pulse width modulation		
- V001	\%	40 ± 5 on
- V002	\%	60 ± 5 on
CE conformity		According to EMC directive 2004/108/EEC Applied harmonized standards: EN 61000-6-2:2005, EN 61000-6-3:2007

${ }^{1)}$ Die angegeben Werte beziehen sich auf eine Betriebsspannung von 24 V

Information on the cable type:

Jacket material	Jacket color	Wire insulation	Wire color	Wires	Jacket diameter
PUR-JZ	black	PP	black, green/yellow	$4 \times 0.75 \mathrm{~mm}^{2}$	6.5 mm

Block diagram / pinout

Wire no. 2: Release "IN"
Wire no. 1: Operating voltage " $+U_{\mathrm{B}}$ " $(24 \mathrm{~V})$
Wire no. 3: Operating voltage "GND"
Wire green/yellow: Protective earthing "PE"

Unit dimensions (dimensions in mm)

Mounting screw M3,
tightening torque $M_{A}=0.4 \mathrm{Nm}$

Project planning / maintenance instructions / additional information

- The plug-in switching amplifier may only be operated within the limits and applications defined in the data sheet.
- The distance to radios and mobile phones must be sufficient (>> 1 m).
- In case of overload or short-circuit, the output will be de-energized. Before another switch-on, release "IN" must be switched to "OFF" (< 3.5 V).
- Between input and output, there is no galvanic separation.
- If the operating voltage connections $+U_{B}$ and GND are interchanged, the current is not limited. This may lead to destruction of the connector or the solenoid. Please make sure that the current is limited by means of external measures.
- In applications as power reducer, the power in PWM operation is not sufficient for switching the valve through a second time if the performance limit is exceeded in the switched condition.

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Command value preparation

Designation	Type	Component series	Data sheet	Page
Modular design				
For controlling valves with integrated electronics	VT-SWMA-1	1X	29902	373
For controlling valves with integrated electronics	VT-SWMAK-1	1X	29903	379
For controlling valves with integrated electronics	VT-SWMA3-...	1X	30288	385
Analog, Euro-card format				
For controlling valves with integrated or external electronics	VT-SWKA-1	1X	30255	391
For controlling valves with integrated or external electronics	VT-SWKA1-5-...	1X	30282	399
For controlling valves with integrated or external electronics	VT-SWKA2-5-...	1X	30289	405

Rexroth

Bosch Group

Analogue command value module

Type VT-SWMA-1

Series 1X

Table of contents

Contents

Features
Page

Ordering code, preferred types
Functional description
Block circuit diagram / pin assignment
Technical data
Terminal assignment
Unit dimensions5

Engineering / maintenance notes / supplementary information

Features

- Suitable for controlling valves with integral electronics
- Possibility of realising simple hydraulic functions via digital controlling
- Adjustment elements:

1 potentiometer for zero point adjustment
(command value offset)
1 potentiometer for command value attenuation
(for differential input)
4 potentiometers for command value preselection
5 potentiometers for ramp time adjustment

- LED lamps: Command value call-up (4 x)

Active ramp time (4 x)
Quadrant recognition
Polarity reversal
Power

- Measuring sockets for command value and ramp time
- Differential input
- 4 call-up possibilities each for command value and ramp time
- Ramp generator with 5 ramp times; 4-quadrant recognition
- Control signal output
- Power supply unit without raised zero point
- Without power part

Ordering code

Analogue command value module	VT-SWMA-1 $\frac{1}{1} 1 \mathrm{X} / \mathrm{V}$ V// 0		*	Further details in clear text
		0		
Series 10 to 19	$=1 \mathrm{X}$			Basic version
(10 to 19: unchanged technical data and pin assignment)		$\mathrm{V} 0=$		Basic version

Functional description

General

The command value module is to be snapped onto top hat rails to EN 60715. The electrical connection is made using screwtype terminals. The module is operated with 24 V DC voltage. A power supply unit [1] provides the internally required positive and negative supply voltages. The green LED (power) lights up as soon as the power supply unit is in operation.

Internal command value

The internal command value is generated from the external command value signal applied to differential input [2], a called up signal and an offset signal (zero point potentiometer "Z" [3]).
The external command value signal can be changed from 0% to approx. 110% by means of potentiometer "G" (amplitude attenuator [4]).

Command value call-ups

Call-up signals w1 to w4 [5] can also be adjusted between 0 $\%$ and 110%. Call-up signals w1 and w2 have a positive, callup signals w3 and w4 a negative polarity. This allows the realisation of two forward and two reverse movements of the hydraulic drive without requiring any additional circuitry. For applications that require more than two signals of the same polarity, command value inversion is provided [6]. If this is activated, for example, together with call-up 3, call-up signal w3 also provides a positive control variable.
Only 1 call-up is possible at a time. If several call-ups are activated simultaneously, the following is valid: Call-up "1" has the lowest priority, call-up "4" has the highest priority [7].

Quadrant recognition

When quadrant recognition [8] is activated, the electronics automatically recognises the polarity [9] and any changes (up/ down) [10] in the control variable and assigns a ramp time to the current signal state.

Ramp time	Polarity of- control output	Signal changes in direction of...	
t 1	+	Maximalwert	$0 \% /$Maximum value $(+)$
t 2	+	0%	Maximum value $(+)$
t 3	-	Maximalwert	0% Maximum value $(-)$$^{0 \mathrm{t} 4}$

As long as the signal is being changed, the LED assigned to the current ramp is alight.

Ramp time call-ups [11]

When quadrant recognition is not activated, a separate ramp time "t1" to "t 4 " is assigned to each command value call-up "w1" to "w4".
As long as a signal is being changed, the LED assigned to the current ramp time is alight.

Ramp time "t5" [12]

If neither quadrant recognition nor a call-up is activated, ramp time " t 5 " is always valid. This ramp time can be used, among others, for an emergency stop function. The valve can be closed with the defined ramp time " 5 ".

Ramp time adjustment

The current ramp time can be checked at measuring socket "t" [13]. Ramp times " 11 " to " $t 4$ " can be adjusted with the help of the ramp time potentiometers. Through activation of a call-up signal, ramp time signal " t " at the measuring socket is clearly assigned to one of the ramp times 11 to $t 4$. t 5 is assigned to the ramp time signal at the measuring socket, if neither a callup nor quadrant recognition is activated. The adjustment range of the ramp time is selected so that these can be set reproducibly (for details, see "Technical data").

Output

The output signal of the ramp generator can be checked at measuring socket " w " [14]. The downstream matching amplifier [15] provides the control signal for the valve via output "control variable" [16].
[] = Cross-reference to block circuit diagram on page 3

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U	24 VDC +40\%-10 \%
Operating range:		
- Upper limit value	$u_{0}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	12 VA
Current consumption	$I_{\text {max }}$	0.5 A
Fuse		Thermal overload protection (reactivation when temperature falls below threshold)
Inputs		
- Command value (differential input with attenuator)	U_{i}	0 to $\pm 10 \mathrm{~V} ; R_{\mathrm{i}}>50 \mathrm{k} \Omega$
- Quadrant operation "4-O"		
- active	U_{4-0}	8.5 V to $35 \mathrm{~V} ; R_{\mathrm{i}}>50 \mathrm{k} \Omega$
- inactive	U_{4-0}	0 to 6.5 V
- Command value inversion "Inv"		
- active	$U_{\text {Inv }}$	8.5 V to $35 \mathrm{~V} ; R_{\mathrm{i}}>50 \mathrm{k} \Omega$
- inactive	$U_{\text {Inv }}$	0 to 6.5 V
- Command value call-ups 1 to 4		
- active	U	8.5 V to $35 \mathrm{~V} ; R_{\mathrm{i}}>50 \mathrm{k} \Omega$
- inactive	\cup	0 to 6.5 V
Adjustment ranges:		
- Zero balancing (potentiometer "Z")		$\pm 30 \%$
- Amplitude attenuator (potentiometer "G")		0 \% to ca. 110 \%
- Command values (potentiometers "w1" to "w4")		0 \% to ca. 110% (factory setting 100%)
- Ramp times (potentiometers "t1" to "t5")		20 ms to 5 s
Outputs:		
- Control variable	u	0 to $\pm 10 \mathrm{~V} ; \pm 2 \mathrm{~mA} ; R_{\mathrm{L}}>5 \mathrm{k} \Omega$
- Measuring socket for control variable "w"	$U_{\text {w }}$	0 to $\pm 10 \mathrm{~V}(+100 \%=+10 \mathrm{~V} ;-100 \%=-10 \mathrm{~V})$
- Measuring socket for ramp time "t"	$U_{\text {t }}$	$0,01 \mathrm{~V}$ to $+10 \mathrm{~V} 0,01 \mathrm{~V}\left(t_{\text {max }}=c a .10 \mathrm{~s}\right) ; 10 \mathrm{~V}\left(t_{\text {min }}=\mathrm{ca} .10 \mathrm{~ms}\right)$
Type of connection		12 screw terminals
Type of mounting		Top hat rail TH 35/7.5 to EN 60715
Type of protection		IP 20 to EN 60529
Dimensions (W x H x D)		$40 \times 79 \times 85,5 \mathrm{~mm}$
Permissible operating temperature range	ϑ	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	ϑ	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0.3 kg

Note:

For details regarding environment simulation tests in the field of EMC (electro-magnetic compatibility), climate and mechanical stress, see RE 29902-U (declaration on environmental compatibility).

Note on the adjustment and measurement of the ramp time
For adjusting the ramp time potentiometers we recommend that
4-quadrant recognition be switched off and call-ups be activated.

Value at measuring socket "t"	U_{t} in V	5	3	2	1	0,5	0,3	0,2	0,1	0,05	0,03	0,02
Current ramp time $(\pm 20 \%)$	t in ms	20	33	50	100	200	333	500	1000	2000	3333	5000

$$
\text { The following is valid: } t=\frac{100 \mathrm{~V} \mathrm{~ms}}{U_{t}}
$$

Example: Measured
Results in $\quad t=\frac{100 \mathrm{~V} \mathrm{~ms}}{5 \mathrm{~V}}=20 \mathrm{~ms}$

Terminal assignment

Operating voltage	$+U_{0}$ 0 V	1	7	Control variable output
		2	8	Reference potential
Quadrant operation	$+U_{4-a}$	3	9	Call-up command value 1
	Reference potential	4	10	Call-up command value 2
Differential input	$\pm U_{\text {comm }}$	5	11	Call-up command value 3
Command value inversion	$+U_{\text {lnv }}$	6	12	Call-up command value 4

Unit dimensions (Dimensions in mm)

Potentiometers (some with LED lamps):

"t1" to "t5"	\rightarrow Ramp times
"w1" to "w4"	\rightarrow Command value call-ups
"G"	Amplitude attenuator for
	differential input
"Z"	\rightarrow Zero point balancing

LED lamps:
"4-Q" \rightarrow Quadrant recognition
"Inv" \rightarrow Inversion active
green \rightarrow Ready for operation "power" (no lettering)

Measuring sockets:

"t" \rightarrow Current ramp time
"w" \rightarrow Internal control variable
" \perp " \rightarrow Reference potential / ground

Engineering / maintenance notes / supplementary information

- The amplifier module may only be unplugged when disconnected from the power supply!
- Ensure a sufficient distance to aerial lines, radio sources and radar equipment ($\gg 1 \mathrm{~m}$)!
- Shield command value lines, do not lay near power cables!
- Caution: When the differential input is used, both inputs must be activated or deactivated simultaneously! Note: Electrical signals (e.g. control variable) brought out via control electronics must not be used for switching safety-relevant machines functions!
(See also the European standard "Safety requirements for fluid power systems and components - hydraulics", EN 982)
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

Analogue command value module

Type VT-SWMAK-1

Series 1X

Table of contents

Contents

Features
Ordering code
Functional description
Block circuit diagram
Output characteristic curve
Technical data
Unit dimensions
Terminal assignment
Engineering / maintenance notes
Adjustment recommendations

Features

- Suitable for controlling valves with integral electronics
- For valve spool overlap compensation
- Possibility of adjusting the maximum valve opening and the hydraulic zero point; convenient correction of zero point shifts
- Adjustment elements:

1 potentiometer for zero point adjustment (command value offset)
2 potentiometers for command value attenuation for positive and negative signals
2 potentiometers for jump adjustment for positive and negative signals

- LED lamps: Enable

Power

- Measuring socket for command value
- Differential input; enable input
- Control signal output
- Power supply unit without raised zero point
- Without power part
- Reverse voltage protection for voltage supply

Ordering code

Functional description

The command value module requires 24 V DC voltage. A power supply unit [7] provides the internally required positive and negative supply voltage. As soon as the power supply unit is in operation, the green LED ("power") lights up. The control signal can be cut in or out by applying a signal at the enable input (connection 3). If no enable signal is applied, the control signal is 0% (with reference to the reference potential "GND" of the command value).
The summator [2] adds an offset, which can be adjusted by means of potentiometer " Z ", to the externally provided command value. Thus, zero point drifts from the control side can be compensated for and the hydraulic zero point can be exactly
adjusted. The adjustable characteristic curve generator [3] can be used to adjust the jump height and maximum values independently of each other for positive and negative signals in accordance with the hydraulic requirements.
The potentiometers "S+" and "S-" serve to compensate for the valve overlap; the potentiometers " $\mathrm{G}+$ " and " $\mathrm{G}-$ " are used for adjusting the maximum flow of the servo- or proportional valve (see output characteristic curve and adjustment recommendation).
The control signal has the same reference potential/GND as the command value. In the case of fluctuations in the reference potential, the summator [4] corrects the control signal as required.

Block circuit diagram

Output characteristic curve

Points of inflection of characteristic curves:

uO	0 \%		
wo	0 \%		
u1	+2 \% = +200 mV		
w1	0 \% to +50\% (S+)	$=$	0 V to +5 V
u2	-2 \% = - 200 mV		
w2	0 \% to -50 \% (S-)	=	0 V to -5 V
u3	$+100 \%=+10 \mathrm{~V}$		
w3	w1 up to +110 \% (G+)	$=$	w1 up to +11 V
u4	$-100 \%=-10 \mathrm{~V}$		
w4	w2 up to -110 \% (G-)	$=$	w2 up to -11 V

The minimum value of $w 3$ and $w 4$ corresponds to the setting of $w 1$ and $w 2$.
Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC
Operating range:		
- Upper limit value	$u_{0}(t)_{\text {max }}$	35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	18 V
Power consumption	P_{C}	1.2 VA
Current consumption	$I_{\text {max }}$	50 mA
Fuse		Electronic protection
Inputs:		
- Command value (differential input)	$U_{\text {e }}$	0 to $\pm 10 \mathrm{~V} ; \mathrm{Re}=100 \mathrm{k} \Omega$ (common reference potential with control signal output)
- Enable		
- active	$U_{\text {F }}$	$>8.5 \mathrm{~V}$
- inactive	$U_{\text {F }}$	$<6.5 \mathrm{~V}$
Adjustment range:		
- Jump function		0 to 50%; jump height achieved at $\mathrm{U}_{\text {comm }}=2 \%$ (can be adjusted separately for positive and negative signals)
- Amplitude attenuator		0% to 110%; this is valid for a jump height setting $=0 \%$ (can be adjusted separately for positive and negative signals)
- Balance		± 10 \%
Outputs:		
- Actuating signal	u	0 to $\pm 10 \mathrm{~V}$
- Measuring socket for command value "w"	$U_{\text {w }}$	0 to $\pm 10 \mathrm{~V}(\pm 10 \mathrm{~V}= \pm 100 \%)$
Type of connection		6 screw-type terminals
Type of mounting		Carrier rail NS 35/7.5 to DIN 50022
Type of protection		IP 20 to DIN 40050
Dimensions (W $\times \mathrm{H} \times \mathrm{D}$)		$25 \times 79 \times 85.5 \mathrm{~mm}$
Permissible operating temperature range	$ง$	0 to $+50^{\circ} \mathrm{C}$
Storage temperature range	$ง$	-25 to $+85^{\circ} \mathrm{C}$
Weight	m	0.08 kg

Unit dimensions (Dimensions in mm)

Terminal assignment

Engineering / maintenance notes

- The command value module may only be wired when disconnected from the power supply!
- Do not lay lines near power cables!
- The distance to aerial lines, radio equipment and radar systems must be at least 1 m !
- Always connect the reference potential of the differential input "GND" to the earth of the control!

Adjustment recommendations

With external command value feedforward:

1. - Apply operating voltage

- Turn potentiometers "S+" and "S-" to the left-hand limit stop (Min)
- Turn amplitude attenuators "G+" and "G-" to the righthand limit stop (Max)
- Preselect command value 0 \%
- Apply enable signal

2. Zero point adjustment

Attention! Terminal 5 is the reference potential for the command value input and the actuating signal output and must be connected to 0 V (earth) at the control.

- Set 0 V at measuring socket " w " using potentiometer " Z "

3. Jump height adjustment

- Preselect command value $+2 \%$
\rightarrow the measuring socket signal is now approx. 0.19 V to 0.23 V
- Adjust the positive jump height using potentiometer "S+"; check the control variable at measuring socket "w" ($10 \mathrm{~V}=100 \%$)
- Preselect command value -2 \%
\rightarrow the measuring socket signal is approx. -0.19 V to -0.23 V
- Adjust the negative jump height using potentiometer "S-"; check the control variable at measuring socket "w" $(-10 \mathrm{~V}=-100 \%)$
For an exact hydraulic adjustment, the valve and the hydraulics must also be in operation. The jump height must be adjusted according to the required min. drive speed (creep speed).

4. Maximum value adjustment

- Preselect command value $+100 \%$
\rightarrow the measuring socket signal is now approx. 10 V to 11 V
- Set the positive max. control variable using potentiometer " $G+$ "; check the control variable at measuring socket " w " ($10 \mathrm{~V}=100 \%$)
- Preselect command value -100%.
\rightarrow the measuring socket signal is now approx. -10 V to -11 V
- Set the negative max. control variable using potentiometer "G-"; check the control variable at measuring socket "w" ($-10 \mathrm{~V}=-100 \%$)

Without external command value feedforward:

1. - Apply operating voltage

- Turn potentiometers "S+" and " S -" to the left-hand limit stop (Min)
- Turn amplitude attenuators "G+" and "G-" to the right-hand limit stop (Max)
- Preselect command value 0 \% (input open or short-circuited)
- Apply enable signal

2. Step height adjustment

- Set an internal command value of $+2 \%$ using potentiometer " Z " \rightarrow the measuring socket signal is now 0.2 V
- Adjust the positive jump height using potentiometer "S+"; check the control variable at measuring socket "w" ($10 \mathrm{~V}=100 \%$)
- Set an internal command value of -2 \% using zero point potentiometer "Z"
\rightarrow the measuring socket signal is now -0.2 V
- Adjust the negative jump height using potentiometer "S-"; check the control variable at measuring socket "w" ($-10 \mathrm{~V}=-100 \%$)

3. Zero point adjustment

- Set 0 V at measuring socket " w " with the help of potentiometer "Z"

4. Maximum value adjustment

- Only possible with external command value feedforward

Notes

c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Command value and ramp module

Type VT-SWMA3-...

Component series 1X

Table of contents

Contents

Features
Ordering code
Front plate
Block diagram with pin assignment
Technical data
Commissioning
Device dimensions
Project planning / maintenance instructions / additional information

Features

Page - Design: Module for snapping onto carrier rail
1 - Suitable for controlling proportional valves with installed electronics

- 4 internal command values
- Command value input U_{E}
- Direction logic (+/-)
- Adjustable ramps

I for $+U_{A}$
II for $-U_{A}$

- Selector switch for $\Delta T_{\text {max }}$
- Input for "Ramps OFF"

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code

Command value and ramp module

VT-SWMA3-5-1X/V0/ 0

$\mathbf{1 X =}$| Votandard option |
| ---: |

Preferred type

Amplifier type	Material number
VT-SWMA3-5-10/V0/0	0811405108

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage		Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Current consumption	A	$\leqq 0.2$
Signal input " U_{E} " analog		Mode I or II: $0 \ldots+10 \mathrm{~V}$ Mode I + II: $0 . . . \pm 10 \mathrm{~V}$
Logic commands "commands"		$\begin{aligned} & 24 \mathrm{~V}=\text { nom, loaded: } 2 \ldots . .5 \mathrm{~mA} \\ & (>6 \mathrm{~V} \text { max. } 40 \mathrm{~V}=) \end{aligned}$
Operating state (mode) 1. Unipolar 2. Bipolar		Mode I (cl. 4) for $U_{\mathrm{A}}=+$ or Mode II (cl. 5) for $U_{A}=-$ Mode I + II for $\pm U_{E} \rightarrow \pm U_{\text {A }}$
Note		Zero point Mode I or zero point $\rightarrow 0 \mathrm{~V}$ Mode I + II zero point with +0.5 V or adjust $-0.5 \mathrm{~V} U_{E}$
Miscellaneous		$\begin{aligned} & \mathrm{P}_{1} \ldots \mathrm{P}_{4} \text { may sum up } \\ & \quad \text { (up to a max. of } 10 \mathrm{~V} \text {) } \\ & \hline \end{aligned}$
Format / design	mm	$860 \times 110 \times 95.5 / \mathrm{module}$
Ambient temperature	${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range	${ }^{\circ} \mathrm{C}$	-20...+70
Weight	m	0.39 kg

Commissioning

- Selection mode I or II
- $\frac{\grave{y}}{1}$ - Zero point with $U_{E}=0 \mathrm{~V}$
- Examination of the signals $U_{E}\left(P_{1} \ldots P_{4}\right)$
- Ramp adjustment I or II

MODE/SIGNAL: $\mathrm{I}+\mathrm{II} \rightarrow \pm \mathrm{U}_{\mathrm{A}}$
$U_{\mathrm{E}} 0 \ldots \pm 10 \mathrm{~V} \rightarrow U_{\mathrm{A}} \pm 10 \mathrm{~V}$ incl. zero

2

- Selection mode I or II (bipolar)
- $\frac{1+}{1-}$ Zero point with $U_{\mathrm{E}}=+0.5 \mathrm{~V}$ and/or -0.5 V
- Examination of the signal $\pm U_{\mathrm{E}}$
- Ramp adjustment I or II

Device dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Command value and ramp card

Type VT-SWKA-1

RE 30255

Edition: 2013-04
Replaces: 06.05

- Component series 1X
- Analog, Euro-card format
- Suitable for controlling valves with integrated electronics. For controlling valves without integrated electronics, an additional suitable amplifier is necessary.
- Suitable for generating, linking and standardizing command value signals

Features

- Configuration and parameterization of the command value card using potentiometers
- Command value inputs:
- Differential input $\pm 10 \mathrm{~V}$
- 4 callable command value inputs $\pm 10 \mathrm{~V}$
- Current input 4 to 20 mA
(standard 0 to 100%; switchable $\pm 100 \%$)
- Actuating variable outputs:
- Voltage $\pm 10 \mathrm{~V}$
- Current 4 to 20 mA
(standard 0 to 100%; switchable $\pm 100 \%$)
- Inverting of the internal command value signal via 24 V input or jumper
- Selection of ramp time via quadrant recognition (24 V input) or ramp time call-ups (24 V inputs)
- Switching of the ramp time range via jumper
- Characteristic curve correction by means of separately adjustable step levels and maximum values
- Enable input
- "Ramp ready" output signal as auxiliary process variable
- "Ready for operation" output signal
- Switchable measuring socket
- Reverse polarity protection for the voltage supply

Contents

Features 1
Ordering code 2
Functional description 2
Block diagram / pin assignment 4
Technical data 5
Display / adjustment elements 6
Dimensions 8
Project planning / maintenance instructions /additional information

More information:

- Product description and commissioning instructions VT-SWKA-1, see 30255-B

Ordering code

01		02	03		04			05
VT-SWKA-1	-	1X	/	V0	/	0	/	*

01	Analog command value card	VT-SWKA-1
$\mathbf{0 2}$	Component series 10 to 19 (10 to 19: Unchanged technical data and pin assignment)	$\mathbf{1 X}$
04	Version: Standard	V0
05	Standard option	$\mathbf{0}$
06	Further details in the plain text	*

Suitable card holder:

- Open card holder VT 3002-1-2X/48F
(see data sheet 29928)

Functional description

General

The command value card is set up as printed circuit board in Euro format, $100 \times 160 \mathrm{~mm}$, and suitable for installation in a rack. An internal power supply unit [1] supplies all internally required positive and negative supply voltages. If the power supply unit is in operation and no error is detected, the green LED on the front plate is lit and the "ready for operation" signal is set.

Current input [3]

There is no switching between current and voltage input. Both inputs are permanently available (see terminal assignment). The input signals are internally standardized and added up. The zero point and the value range of the current input can be switched using jumper J5.

Command value call-ups [4]

Four command value signals "w1" to "w4" can be called up. The external command value voltages (command values 1 to 4) are either defined directly by the regulated voltage outputs +10 V and -10 V or via external potentiometers. If these command value inputs are directly connected to the regulated voltages, the command values are set at the potentiometers "w1" to "w4". When using external potentiometers, the internal potentiometers will function as attenuators or limiters.
Only one call-up can be operated at the same time. If several call-ups are operated simultaneously, call-up "1" has the lowest priority and call-up "4" has the highest priority.
The respective active call-up is indicated via a yellow LED on the front plate.

Command value inversion [7]

The command value created internally from the input signals, the command value call-ups and the zero point offset signal can be inverted by an external signal or jumper J1. If an external inverting signal is connected, this is indicated by an LED ("-1") on the front plate.

Enable function [8]

The enable function switches the input signal of the ramp generator on or off. If enable is switched on or off, the control output changes with the set ramp time irrespective of the command value. Thus, a controlled valve does not open or close abruptly. If an error signal occurs, the ramp generator input signal is also set to 0%. The enable signal is indicated by an LED on the front plate.

Ramp generator [9]

The ramp generator limits the rise of the control output. The downstream step functions and amplitude attenuators do not extend or shorten the ramp time.
Using jumper J2, the ramp time is set to a minimum (< 2 ms) (ramp off).
External ramp time setting:
Using an external potentiometer, the internally set ramp time can be extended. The setting can be verified by means of the measuring socket. In case of a cable break, the internal default setting will be valid automatically. Note for setting and measuring the ramp time:

Functional description (continued)

Value at measuring socket " v "					$U_{\mathrm{t}} / \mathrm{V}$		5	3	2
Current ramp time (± 20 \%)					t / ms		20	33	50
$U_{\mathrm{t}} / \mathrm{V}$	1	0.5	0.3	0.2	0.1	0.05	0.03		0.02
t / ms	100	200	333	500	1000	2000	333		5000

By reconnecting the jumper J 3 , the ramp times specified above can be increased tenfold.

Ramp status signal [11]

The "ramp ready" status signal indicates that the control output has reached the desired end value. By means of this signal (24 V output), superior sequence controls can be more easily synchronized with the valve function or the controlled hydraulic function.

Characteristic curve generator [12]

Using the adjustable characteristic curve generator, step level and maximum values for positive and negative signals can be set separately, adjusted to the hydraulic requirements. The actual development of the characteristic curve through the zero point is not stepped but linear.

Amplitude limiter [13]

The control outputs (current output and voltage output) are limited to approx. $\pm 110 \%$ of the nominal range.

Fault recognition [14]

The internal operating voltages and the voltage outputs are monitored and, if the jumper $\mathrm{J} 7(1-2)$ is connected, the current output is checked for cable break. If there is no error, the green "ready for operation" LED is lit and the "ready for operation" output is switched to 24 V (operating voltage).

Measuring points [15]

A measuring socket on the front plate is provided for verifying the settings of the command value call-up, the ramp times and further internal signals. The measuring points are selected via the measuring point selector switch which is also located on the front plate. The signal of the measuring socket is also connected to the male multipoint connector (b26).
[] = references to the block diagram on page 4

Block diagram / pin assignment

Bosch Rexroth AG, RE 30255, edition: 2013-04

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC + 40 \% - 20 \%
Operating range:		
Upper limit value	$U_{B}(t)_{\text {max }}$	35 V
Lower limit value	$U_{B}(t)_{\text {min }}$	18 V
Power consumption	$P_{\text {S }}$	$<7 \mathrm{VA}$
Current consumption	1	$<0.3 \mathrm{~A}$
Fuse	1 s	Thermal overload protection; self-activating after tripping
Inputs, analog		
Command values 1 to 4 (potentiometer inputs)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>100 \mathrm{k} \Omega$ (M 0 is reference)
Command value 5 (differential input)	$U_{\text {e }}$	$0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{e}}>50 \mathrm{k} \Omega$
Command value 6 (current input)	$l_{\text {e }}$	$4 \ldots 20 \mathrm{~mA}$, load $R_{\mathrm{B}}=100 \Omega$ (zero point switchable)
External ramp time	$U_{\text {e }}$	$0 \ldots+10 \mathrm{~V}, R_{\mathrm{e}}=10 \mathrm{k} \Omega$ (internally increased to +15 V , M0 is reference)
Inputs, digital		
Command value call-ups, Command value inversion, Enable, Ramp call-ups, 4-quadrant operation	$\begin{aligned} & U \\ & U \end{aligned}$	$\begin{aligned} & 8.5 \mathrm{~V} \ldots U_{\mathrm{B}} \rightarrow \mathrm{ON}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \\ & 0 \ldots 6.5 \mathrm{~V} \rightarrow \mathrm{OFF}, R_{\mathrm{e}}>100 \mathrm{k} \Omega \end{aligned}$
Setting ranges		
Zero adjustment (potentiometer "Zw")		± 30 \%
Command values (potentiometers "w1" to "w4")		$0 . . .110 \%$
Ramp times (potentiometer "t1" to "t5")		$20 \mathrm{~ms} \ldots 5 \mathrm{~s}$, switchable to $0.2 \ldots 50 \mathrm{~s}$ using J3
Step level (potentiometer "S+" and "S-")		$0 \ldots 50 \%$ (step level reached at approx. 2 \% of specified command value)
Amplitude attenuator (potentiometer "G+" and "G-")		$0 \ldots 110 \%$ (applies to the step level setting of 0%)
Outputs, analog		
Control output voltage	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Control output current	\cup	$4 \mathrm{~mA} \ldots 20 \mathrm{~mA} \pm 2 \%$; $R_{\mathrm{B} \max }=500 \Omega$ (zero point switchable)
Measurement signal	\cup	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Outputs, digital		
Ramp ready		$\begin{aligned} & >16 \mathrm{~V}, 50 \mathrm{~mA} \rightarrow \text { ramp ready } \\ & <1 \mathrm{~V} ; R_{\mathrm{i}}=10 \mathrm{k} \Omega \rightarrow \text { ramp on } \end{aligned}$
Ready for operation	U	$>16 \mathrm{~V}, 50 \mathrm{~mA}$ (in case of a fault: $U<1 \mathrm{~V}, R_{\mathrm{i}}=10 \mathrm{k} \Omega$)
Regulated voltages	U	$\pm 10 \mathrm{~V} \pm 2 \%, 25 \mathrm{~mA}$, short-circuit-proof
Measuring sockets		
Measurement signal " v " (depending on the position of the measuring point switch-over)	U	$\pm 10 \mathrm{~V} \pm 2 \%, I_{\text {max }}=2 \mathrm{~mA}$
Type of connection		48-pin male multipoint connector, DIN 41612, design F
Card dimensions		Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
Admissible operating temperature range	ϑ	$0 \ldots 50{ }^{\circ} \mathrm{C}$
Storage temperature range	ง	$-25^{\circ} \mathrm{C} \ldots+85^{\circ} \mathrm{C}$
Weight	m	0.15 kg (net)

Display / adjustment elements

J5 \rightarrow current input	$1-2$	$2-3$
$0 \% \triangleq 4 \mathrm{~mA}$	\bullet	-
$0 \% \triangleq 12 \mathrm{~mA}$	-	\bullet

J1 \rightarrow inverting	$1-2$	$2-3$
Inverting	\bullet	-
Not inverting	-	\bullet

$\mathbf{J 4} \rightarrow$ step function	$1-2$	$2-3$
Off	\bullet	-
On	-	\bullet

Do not adjust!
(Internal reference voltage)

LED indicators:

(). Ready for operation (green)

- Enable (yellow)
-1 External inverting
4Q Quadrant recognition
T Reserved
Potentiometers (some with LED indicator):
Zw Zero point calibration
w1 Command value 1
w2 Command value 2
w3 Command value 3
w4 Command value 4
t1 Ramp time 1
t2 Ramp time 2
t3 Ramp time 3
t4 Ramp time 4
t5 Ramp time 5

$\mathbf{J 2} \rightarrow$ ramp function	$1-2$	$2-3$
Off	\bullet	-
On	-	\bullet
J3 \rightarrow ramp time		
Tenfold	\bullet	-
Simple	-	\bullet

Cannot be set via front plate:
G+ Amplitude attenuator for positive command values
G- Amplitude attenuator for negative command values
S+ Step level for positive direction
S- Step level for negative direction

Measuring sockets:

v Measurement signal (see page 7)
\perp Measurement zero
\square
... Connection activated

- ... Connection open
\square... Factory setting of the jumpers

For further information and important notices see product description and commissioning instructions 30255-B.

Bosch Rexroth AG, RE 30255, edition: 2013-04

Display / adjustment elements (continued)

Measuring socket " v "

Signal designation	Measuring point selector switch	Measurement signal "v"
Internal command value	0	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 1	1	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 2	2	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 3	3	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Command value call-up 4	4	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Zero point offset "Zw"	5	$\pm 30 \%$ ¢ $\pm 3 \mathrm{~V}$
1 composite signal of the command values	6	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Ramp output signal	7	$\pm 100 \% \triangleq \pm 10 \mathrm{~V}$
Not connected	8	
Not connected	8	
Ramp time "t1"	A	10 mV ... 10 V
Ramp time "t2"	B	10 mV ... 10 V
Ramp time "t3"	C	10 mV ... 10 V
Ramp time "t4"	D	10 mV ... 10 V
Ramp time "t5"	E	10 mV ... 10 V
Current ramp time "t"	F	10 mV ... 10 V

Dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The command value card may only be unplugged and plugged when de-energized.
- Do not lay lines close to power cables.
- The distance to aerial lines, radios, and radar systems has to be 1 m at least.
- For switching command values, relays with gold-plated contacts have to be used (small voltages, low currents).
- Always shield command value lines, connect shielding to protective earth (PE) on the card side.

Notice:

If the differential input is used, both inputs must always be connected or disconnected at the same time.
For further information see "Product description and commissioning instructions VT-SWKA-1" (30255-B).

[^24][^25]
Command value signal card

Type VT-SWKA1-5-...

Component series 1X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Application
Device dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling valves with integrated or external electronics
- Analog amplifiers in Europe format for installation in 19 " racks
- Used for the command value preparation
. 4 internal, variable command values
- Command value call-ups using digital signals
- 2 signal inputs for inversion

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number
VT-SWKA1-5-1X/V0/0	0811405093

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation.

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $\mathrm{z} 2-\mathrm{b} 2$	Nominal $24 \mathrm{~V}=$ Battery voltage $21 \ldots 40 \mathrm{~V}$, Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Current consumption mA	Max. 150
Signal preparation	8 trimming potentiometers for $0 . . .10 \mathrm{~V}$ Negative output signals by means of the external command $I N_{\mathrm{V} 1}$ (b8) or $I N_{\mathrm{V} 2}$ (b 26)
$\begin{aligned} & \hline \text { Signal call-up } \\ & \text { z2...z8/z26...z32 } \\ & \hline \end{aligned}$	8 signal inputs +24 V (max. $40 \mathrm{~V}=$) $R_{\mathrm{i}}=2 \mathrm{k} \Omega$ P1...P4 and/or P5...P8 individually or summing
Display	Yellow LED for the potentiometer that is called up Green LED for true output signal and for inverted output signal
Summary P1...P8 via channel 1	Bridge z24-z18: P1...P4 +P5...P8 z24-z16: P1...P4-P5...P8
Format of the printed circuit board mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.33 kg

Application

Two-channel command value card for the preparation and call-up of four internal signal voltages ($U_{\text {command }}=0 \ldots \pm 10 \mathrm{~V}$) per channel.

- By means of its output signals $U_{\mathrm{A} 1}$ (channel 1) and/or $U_{\mathrm{A} 2}$ (channel 2), the command value signal card usually controls a proportional amplifier.
- In two separate channels, you can set eight command values from 0 to +10 V , using in each case four internal potentiometers: P1 to P4 (channel 1) P5 to P8 (channel 2).
- The individual command values are called up via the external enable signals (switching signals +24 V) that are allocated to the potentiometers:
Command 1-1 to command 1-4 (channel 1) Command 2-1 to command 2-4 (channel 2).
- The selected call-up is signalized by means of yellow LED displays: LED 1 to LED 8.
- Two differential inputs $U_{\text {E1 }}$ (channel 1) and $U_{\text {E2 }}$ (channel 2) allow for the feed-in of additional external command values 0 to $\pm 10 \mathrm{~V}$.
- The output signal $U_{\mathrm{A} 1}$ (channel 1) or $U_{\mathrm{A} 2}$ (channel 2) can be inverted by means of an external input signal $I N_{\mathrm{V}_{1}}$ or $I N_{\mathrm{V} 2}$; i.e. positive command values $U_{\mathrm{E} 1}, U_{\mathrm{E} 2}$ and/or the internal command values P 1 to P 8 result in a negative output $U_{\text {A } 1}$ or $U_{\text {A } 2}$. Green LED displays at the front plate signalize that there is an inverse output signal.
- Command value signal linking. If more than four internal command values are necessary, up to eight command values can be processed by feeding in the output $U_{\text {A2 }}$ (channel 2) into channel 1.

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Command value and ramp card

Type VT-SWKA2-5-...

Component series 1X

Table of contents

Contents

Features
Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Applications
Device dimensions
Project planning / maintenance instructions / additional information

Features

Page
1 - Preparation and call-up of signal voltages
2 - Generation of voltage ramps via potentiometers
2 - Accessory card for electric amplifiers
3
4
5 Notice:
6 The photo is an example configuration. The delivered product differs from the figure.

Ordering code, accessories

Command value and ramp card

Preferred types

Amplifier type	Material number
VT-SWKA2-5-1X/V0/0	0811405094

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

Potentiometer supply

$+10 \mathrm{~V} \quad \mathrm{~b} 32!+10 \mathrm{~V}$
$-10 \mathrm{~V}$

$+U_{\mathrm{B}}<\sim$

Call-up
External command value
External com-
mand value
Signal output
Signal output U_{A}
$U_{A}=0 \ldots \pm 10 \mathrm{~V}$ $U_{A}=0 \ldots$.

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at b16-b18 and b2-b4	```Nominal \(24 \mathrm{~V}=\) Battery voltage \(21 . . .40 \mathrm{~V}\), Rectified alternating voltage \(U_{\text {eff }}=21 \ldots 28 \mathrm{~V}\) (one-phase, full-wave rectifier)```
Max. current consumption mA	350
Command value preparation	- 2 internal, fixed command values: +10 V and -10 V , can be called via digital signals (+24 V) at z24 and z26 (e.g. use as input command values) - 4 internal, variable command values: Adjustable via potentiometers P1...P4 on the front plate Supply from internal, stabilized voltage source b32 $=+10 \mathrm{~V}$ and/or z22 $=-10 \mathrm{~V}$ (can in each case be loaded with 100 mA) Command value call-up via digital signals (+24 V) at the terminals b20, b22, b24 and b26 - 1 input for external command value specification: Designed as differential amplifier Input voltage $0 \ldots \pm 10 \mathrm{~V}$ at terminals b10 and b14 Input impedance $R_{\mathrm{i}}=100 \mathrm{k} \Omega$ - 1 input for external command value specification: Designed as differential amplifier Input voltage $0 \ldots \pm 10 \mathrm{~V}$ at terminals z 14 and z 16 Input impedance $R_{\mathrm{i}}=100 \mathrm{k} \Omega$ Additional command value input without ramp function, can be added to the ramp command value as bypass signal
Ramp generation	- Selection of two ramp time ranges $\mathrm{t} 1=0.05 \ldots 5 \mathrm{~s}, \mathrm{t} 2=0.1 \ldots 10 \mathrm{~s}$ - Separate ramps which can be adjusted at potentiometers for acceleration $\alpha 1, \alpha 2$ (P5 and P7) and braking $\beta 1, \beta 2$ (P6 and P8) - Selection of two ramp time combinations $\alpha 1, \beta 1$ or $\alpha 2, \beta 2$. Selection via digital signal (+24 V) at terminal b30 High level (+24 V) $\hat{=} \alpha 2, \beta 2$ (P7/P8), low level (0 V) and/or open input $\triangleq \alpha 1, \beta 1$ (P5/P6) - Automatic quadrant recognition of the ramps for positive and negative command values - "Ramps Off" control with digital signal (+24 V) at b28 High level (+24 V) \triangleq ramp Off, low level (0 V) and/or open input \triangleq with ramps
Signal outputs	- Main output (z20), signal ground (b12) - Additional output (z12) total command value from P3 and P4 without ramp control, see block diagram - Additional output (z10) total command value without ramp control. Is formed from Σ P1...P4 and external command value b10/b14. Can be measured as input signal for ramp generator - Every output can be loaded with $10 \mathrm{~mA}(\mathrm{load}=10 \mathrm{k} \Omega$)
Digital inputs (control inputs)	- Signal voltage $U_{\mathrm{E}}=+6 \ldots+40 \mathrm{~V}, U_{\mathrm{E} \text { nom. }}=+24 \mathrm{~V}$ High signal $\geqq+6 \mathrm{~V}$, low signal $\leqq+6 \mathrm{~V}$ Input impedance $R_{\mathrm{i}}=2 \mathrm{k} \Omega$ (input current approx. $10 \ldots . .15 \mathrm{~mA}$)
Displays/messages (see page 2)	- LED displays for active command values P1...P4 and/or fixed command values +10 V and -10 V - LED display for ramp combination ($\alpha 1, \beta 1$) or ($\alpha 2, \beta 2$) - LED display with "Ramp Off" mode - LED operating messages with 2-color LED green: Operating voltage $U_{B}=$ On red: Operating voltage too small
Format of the printed circuit board mm	$(100 \times 160 \times \text { ca. } 35) /(\mathrm{W} \times \mathrm{L} \times \mathrm{H})$ Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight	0.33 kg

Applications

1. Preparation and call-up of signal voltages $U_{\mathrm{E}}=0 \ldots \pm 10 \mathrm{~V}$.
2. Generation of voltage ramps $\mathrm{t}=0.05 \ldots . .10 \mathrm{~s}$ via potentiometer settings on the front side.
3. By means of the DIL switch S1, the command values P3/P4 can be connected with or without ramp function.

DIL S1.		Ramp
.1	.2	$. \mathrm{P3} / \mathrm{P} 4$
1	0	\sim EIN/ON
0	1	AUS/OFF

Command value run program

Example

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Motion

Designation	Type	Component series	Data sheet	Page
Analog				
Analog positioning module	VT-MACAS	1X	30050	413
p/Q closed-loop control amplifier	VT-VARAP1	2X	30058	425
p/Q closed-loop control amplifier	VT-VACAP	2X	30134	439
$\Delta p / Q$ controller	VT-VACAF	1 X	30136	451
Integrated				
4/3 proportional directional valve with integrated digital electronics and field bus interface (IFB-P)	4WREF	2x	29048	467
4/3-proportional directional valve direct operated, with PQ functionality	STW 0195, STW 0196	2X, 1X	29014	489
4/3-proportional directional valve direct operated, with $p Q$ functionality	4WREQ	2 X	29050	507
High-response valve with integrated digital axis controller (IAC-Multi-Ethernet)	4WRPDH	2X	29391	533
High-response valve with integrated digital axis controller (IAC-R) and field bus interface	4WRPNH.../24	2X	29191	555
High-response valve with integrated digital axis controller (IAC-R) and clock-synchronized PROFIBUS DP/V2 (PROFIdrive profile)	4WRPNH.../24F	2x	29291	577
Standard				
Digital closed-loop control electronics	VT-HACD-3	2X	30543	595
Digital command value and controller card	VT-HACD-1	1 X	30143	611
Digital Controller for electro-hydraulic Injection Molding Machines	VT-HACD-DPQ	2X	30146	625
Programmable				
Digital axis control	VT-HNC100	3 x	30139	635
Digital drive controller for hydraulic axes with sercos interface	VT-HNC100.../S	3 X	30159	655
Digitale Reglerbaugruppe HNC100-SEK zur Sekundärregelung von Axialkolbeneinheiten	SYHNC100-SEK	3 X	30162	669
Digital axis control	VT-HNC100-1, VT-HNC100-2	2X	30131	689
Advanced				
Digital multi-axis NC control	VT-MAC8	1X	30156	703
Motion-Logic System IndraMotion MLC, controller-based	e catalog "Automation 604	Systems and	trol Compon	

Hydraulics

Analog positioning module

Table of contents

Contents

Features

Ordering code
Front plate
Block diagram with pin assignment
Technical data
Function
Electrical connection
Adjustment and commissioning
Error reactions
Velocity controller adjustment
Device dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling valves with installed electronics for position and velocity control
- Design: Module for snapping onto carrier rails
- Enable input
- Cable break detection for actual value cable
- Interfaces short-circuit-proof
- Test points on front plate
- Compensation step that can be switched off
- Position: PT1 control
- Velocity control possible in connection with tachometer (speed indicator): PI control
- Area adjustment cylinder

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code

Preferred types

Amplifier type	Material number
VT-MACAS-500-10/V0	0811405139
VT-MACAS-500-10/V0/I	0811405140

Error U
Ramp time ranges
Accelerations
Braking

Technical data (For applications outside these parameters, please consult us!)

Supply voltage (8), (9)	Nominal $24 \mathrm{~V}=$ Battery voltage $21 \ldots 40 \mathrm{~V}$, Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Current consumption, max. mA	200
Signal input (1), (2)	$U_{\text {command }}: \pm 10 \mathrm{~V}$, differential amplifier $R_{\mathrm{i}}=100 \mathrm{k} \Omega$
VT-MACAS-500-10/V0/I	$I_{\text {command }}: 4 . . .20 \mathrm{~mA} \quad R_{\text {sh }}=200 \Omega$
Actual value signal VT-MACAS-500-10/V0 $(3),(4)$	$U_{\text {actual }}: \pm 10 \mathrm{~V}$, differential amplifier $R_{\mathrm{i}}=100 \mathrm{k} \Omega$
VT-MACAS-500-10/V0/I	$I_{\text {actual }}: 4 \ldots 20 \mathrm{~mA} \quad R_{\text {sh }}=200 \Omega$
Valve signal (5), (6, (7))	$\begin{aligned} & U_{\mathrm{V}}= \pm 10 \mathrm{~V}(\max .10 \mathrm{~mA}) \text { or } \\ & I_{\mathrm{V}}=4 \ldots 20 \mathrm{~mA}(\text { middle } 12 \mathrm{~mA}) \end{aligned}$
Compensation step	Can be switched off; effective in a range of $\pm 4 \%$
Enable signal (10) V=	8.5... 40
Error message (11)	$\begin{aligned} & \text { No error: } 24 \mathrm{~V}_{\text {nom }}\left(U_{\mathrm{B}}\right) \max .50 \mathrm{~mA} \\ & \text { Error: }<2 \mathrm{~V} \\ & \hline \end{aligned}$
IN POS message (12)	$\begin{aligned} & \text { IN POS: } 24 \mathrm{~V}_{\text {nom }}\left(U_{\mathrm{B}}\right) \mathrm{max} .50 \mathrm{~mA} \\ & \text { Not IN POS: <2 } \mathrm{V} \\ & \hline \end{aligned}$
Ramp ranges	$\begin{aligned} & \text { I: } 0.1 \ldots 1 \mathrm{~s} \\ & \text { II: } 1 \ldots 10 \mathrm{~s} \end{aligned}$
Area adjustment $A_{K}: A_{R}$	Min. 1:1; max. 1:4
Actual value adjustment	Zero point: -5...10\% Gain: 50...110\%
Controller type	Position: PT_{1} Velocity: PI
Zero point valve \%	± 5
Special features	- Switchable from position to velocity control - Switchable position window - Test points on front plate - Interfaces short-circuit-proof
Format/design mm	(86 x 110×95.5) / module
Mounting	Top hat rail TH35-7,5 or G rail G32 according to EN 60715
Connection	Connectors + terminals
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range ${ }^{\circ} \mathrm{C}$	-20...+70
Weight m	0.38 kg

Function

Applications

By means of this controller module, simple position or velocity controls can be represented in connection with Bosch Rexroth servo cylinders with analog position measurement systems (potentiometer). As the entire signal processing is analog and the module is only equipped with the necessary features for the set-up of controls, the costs for the drive can be kept low. There is moreover the particularity that the module can be internally switched to velocity control (front plate) and one version is in each case offered for voltage interface and current interface, referring to the command and actual values.

Position control

Command and actual value of the position are compared and the deviation is forwarded to the valve amplifier. In case of an abrupt change of the input signal, the system will react with maximum dynamics. The times for accelerating or braking a load are either limited by the available power or the system gain. With a ramp function as input value, the load is moved with a constant velocity.

Velocity control*

Command and actual value of the velocity are compared and the deviation is forwarded to the valve amplifier. The signal is amplified by integration so that even smallest errors are compensated.

With a ramp function as input signal, there is a gradual acceleration and/or deceleration with a constant value.

* Only possible with tachometer (speed indicator).

Electrical connection

Wiring diagram

 AVPC-V

Electrical connection

Wiring diagram

AVPC-mA

D* valve signal for valve with voltage or current interface

Adjustment and commissioning

The entire adjustment of the module is carried out at the front plate with operating pressure.

- Velocity controller/position controller
- Compensation step ON / OFF
- Position window 0.5 \% / 1 \%
- Ramp ON / OFF
$-K_{P}=1 \quad$ with position control
$-\mathrm{K}_{\mathrm{I}}=2 / \mathrm{K}_{\mathrm{TI}}=1 \quad$ with velocity control $\left(\mathrm{K}_{\mathrm{I}}=1\right.$ forbidden $)$
- Hex switch "A / B"; according to the area ratio of the cylinder
- LED "ON" is illuminated
- LED "দU" and LED " 1 JJ" are not illuminated
\rightarrow otherwise, see error reactions, page 10
-Specification of the command value minimum
\rightarrow by means of "zero feedb." potentiometer actual value adjustment to 0 V (TP "act." against TP " \perp ")
- Specification of the command value maximum (e.g. + 10 V ; 20 mA)
\rightarrow by means of "gain" potentiometer actual value adjustment to 10 V (TP "act." against TP " \perp ")

Notice

At the 13-pin connection terminal of the module, no measuring devices must be connected in order to perform voltage measurements of the actual or command value.

- Enable OFF
- Specification of the command value for valve zero position
\rightarrow By means of "zero valve" potentiometer adjustment of the valve signal (e.g. cylinder standstill; 0 V at the valve)
- Gradual increase in the K_{P} share, then
- Gradual increase in the $K_{T 1} / K_{1}$ share
- Adjustment aid, page 10
- If ramp function required:

Ramp ON \rightarrow time range pre-selection

- Specification of the command value step (e.g. $20 \% \ldots 60 \%$)

Setting of the velocity ramps (position) and/or acceleration ramps (velocity) by means of the potentiometer

- Comparison of the chronological sequence $s(t)$ and/or $v(t)$ of both directions of movement by means of an oscilloscope
\rightarrow by means of hexcode switch "A / B" compensation of differences

Error reactions

4 U : Tripping if the value falls below the minimum internal supply voltage
\Rightarrow Valve signal 0 V and/or 12 mA ;
\Rightarrow Message LED " 1 U" and (11)
Possible causes: External supply voltage too low (< 16 V) or internal error (\rightarrow repair).
$4 \int J: \quad$ Tripping if the actual value or command value lines break
\Rightarrow Valve signal 0 V and/or 12 mA ;
\Rightarrow Message LED "JJ" and (9)

The error is stored.
Deletion of the error by switching the enable signal or the supply voltage off and on again.
Position

Velocity controller adjustment

Device dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The distance to aerial lines, radios and radar systems must be sufficient (> 1 m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

p/Q closed-loop control amplifier

Component series 2X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Additional information
Examples
Function
Block diagram daughter card
Mode setting
General notes
Ideal development
Adjustment protocol
Unit dimensions
Project planning / maintenance instructions / additional information

Features

Page
1
2 - Analog amplifiers in Europe format for installation in 19" racks
2 - Valve position control with PID behavior
3,4 - Pressure control with external pressure load cell
5, 6 - Controlled output stage
6 - Enable input
7 - Outputs short-circuit-proof
8 - Adjustment possibilities - Zero point valve
9 - Cable break detection for actual value cable and pres-

- Suitable for controlling direct and pilot operated control valves
- Amplifier with additional electronics (daughter card) sure sensor
- Fast energization and fast deletion for short actuating times
- External controller shut-off
- Suitable for pressure sensors (1... 6 V, 0... 10 V, 4... 20 mA), see data sheet 30271

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves with electrical position feedback
VT-VARAP1-527-20/V0	0811405152	4WRPH6...
VT-VARAP1-537-20/V0	0811405153	4WRPH10...
VT-VARAP1-537-20/V0/5/3V	0811405154	5WRP10...
VT-VARAP1-527-20/V0/2STV	0811405155	4WRL...
VT-VARAP1-527-20/V0/3/2VAX	0811405156	3WRCBH25...50...

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

0811405155, 0811405156

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-b 2$	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at z 2 - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Valve solenoid, max. A/VA	2.7/40 (size 6) $3.7 / 60$ (size 10)
Current consumption, max. A	1.7 2.7
	The current consumption may increase with min. U_{B} and extreme cable length to the control solenoid
Power consumption (typical) W	37 \| 55
Input signal (command value)	$\left.\begin{array}{l}\text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \text { z20: } 0 \ldots \pm 10 \mathrm{~V}\end{array}\right\}$ Differential amplifier $\left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)$
Input signal (command value p)	
Actual value from the pressure sensor	z14: $4 \ldots 20 \mathrm{~mA}$ - Current input b16: $0 \ldots+10 \mathrm{~V} / 1 \ldots+6 \mathrm{~V}-$ Voltage input b18: 0 V - Reference
Pressure controller OFF	b10: $6 . . .40 \mathrm{~V}=$
External enquiry pressure controller active	z24: $24 \mathrm{~V} / 0.1$ A max.
Limit frequency	For applications $\leqq 30 \mathrm{~Hz}$
Signal source	Potentiometer $10 \mathrm{k} \Omega$ Supply with $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Enable output stage	At z16, $U=8.5 \ldots 40 \mathrm{~V}, R_{\mathrm{i}}=100 \mathrm{k} \Omega$, LED (green) on front plate lights up
Sensor supply	z6: $+15 \mathrm{~V} / 35 \mathrm{~mA}, R_{\mathrm{i}} \sim 25 \Omega$
Position transducer Supply	$\begin{aligned} & \hline \mathrm{b} 30:-15 \mathrm{~V}(25 \mathrm{~mA}) \\ & \mathrm{z} 30:+15 \mathrm{~V}(35 \mathrm{~mA}) \\ & \hline \end{aligned}$
Pilot control valve Actual value signal	b22: $0 \ldots \pm 10 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega /$ Ref. b24
Main stage Actual value reference	b26: $0 \ldots \ldots 10 \mathrm{~V}, R_{\mathrm{L}}=10 \mathrm{k} \Omega /$ Ref. b28
Solenoid output	Clocked current controller
$\mathrm{b} 6-\mathrm{b} 8 \quad I_{\text {max }}$	2.7 A 3.7 A
Cable lengths between amplifier and valve	Solenoid cable: up to $20{\mathrm{~m} 1.5 \mathrm{~mm}^{2}}^{20}$ to $60 \mathrm{~m}^{2.5 \mathrm{~mm}^{2}}$ Position transducer: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded) Pressure sensor: $4 \times 0.5 \mathrm{~mm}^{2}$ (shielded)
Special features	Cable break protection for actual value cable, Position control with PID behavior, Pulsed output stage, Fast energization and fast deletion for short actuating times, Short-circuit-proof outputs, Controller shut-off
Adjustment	Zero point via trimming potentiometer $\pm 5 \%$ Command value attenuator Q Pressure controller $K_{\mathrm{p}}, K_{\mathrm{l}}$ and K_{D} Sensitivity pressure load cell Zero point pressure load cell
LED displays	green: Enable yellow: Cable break position transducer red: Supply voltage (U_{B} too low) yellow: Pressure controller OFF yellow: Pressure controller is working both yellow LEDs are flashing: Cable break pressure sensor

Technical data (For applications outside these parameters, please consult us!)

Error message - Cable break actual value - U_{B} too low - $\pm 15 \mathrm{~V}$ stabilization		$z 22$: Open collector output to $+U_{B}$ Max. 100 mA ; no error: $+U_{B}$
Circuit board format	mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front panel 7 TE
Plug-in connection		Connector DIN 41612 - F32
Ambient temperature	${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range	${ }^{\circ} \mathrm{C}$	-20...+70
Weight	m	0.49 kg

Notice:
Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).

Additional information

Applications

The p / Q closed-loop control amplifiers consist of a basic card with front plate containing the valve amplifier with position control as well as an attached daughter card on which the actual pressure control has been realized.
These amplifiers are only supplied as complete combinations. In connection with the corresponding high-response valves (see table page 2) and pressure sensors (sensor signal $1 \ldots .6 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$), flows can be controlled and pressures in closed control loops can be regulated. The input variables are the pressure p and flow Q command values. Pressure and valve spool path are fed back as actual values.

The combination of valve amplifier and p / Q controller takes effect:
a) As long as $p_{\text {command }}<p_{\text {actual }}$ as flow control, i.e. the pressure control does not take effect, yet.
b) With $p_{\text {command }} \geqq p_{\text {actual }}$ as pressure control, i.e. the flow is reduced until $p_{\text {actual }}=p_{\text {command }}$. The pressure control works only with a positive command value voltage at $z 20$.
The command value Q corresponds to the spool path as long as the pressure control does not take effect, yet, i.e. $p_{\text {command }}>p_{\text {actual }}$ or if the pressure controller is switched off (DIL 4 OFF). The command value Q may range between $U_{\mathrm{E}}=0 \ldots \pm 10 \mathrm{~V}$. For the dynamic pressure control there should, however, in addition to the command value p also be a command value $Q_{1} U_{\mathrm{E}} \geqq 2 \ldots+10 \mathrm{~V}$.

Examples

Example 1

Pressure control in a cylinder chamber for achieving a constant clamping force.

Example 2

Flow with load compensation controlled via pressure compensator and the pressure regulated in the closed control loop (pressure cut off).

Function

The combination of basic card and daughter card is shown in the block diagrams on page 3 and 4 . Details of the daughter card, i.e. the pressure control, result from a detailed block diagram on page 9.
The command value $p(z 12)$ is specified by the user by a voltage $0 \ldots+10 \mathrm{~V}$, e.g. by means of a potentiometer which can be supplied from z32/b12 (z10 to 0 V).
The actual value p is supplied by a pressure sensor. Optionally, sensors with current signal interface $4 \ldots 20 \mathrm{~mA}$ or voltage signal interface $1 . . .6 \mathrm{~V}$ and/or $0 \ldots 10 \mathrm{~V}$ can be used. Zero point and sensitivity of the sensor can be set at the front plate. Cable break of the pressure sensor is signalized (LEDs flash) if the sensor is supplied at $z 6$.
Command and actual value are compared in the summing point which is moreover affected by a differentiated actual value.

The control deviation is amplified by a PID controller and reaches a limiter superimposing the command value Q with the pressure controller signal if $p_{\text {command }} \leqq p_{\text {actual }}$.
As long as $p_{\text {command }}>p_{\text {actual }}$ or if the command value Q ranges between $0 \ldots-10 \mathrm{~V}$, the limiter and thus the pressure control do not take effect and there is simple flow control. The characteristic of the PID controller and the D element can be roughly set by means of the DIL switch on the daughter card and finely by means of the HEXCODE switch on the front plate. If the pressure is regulated, this condition is displayed on the front plate (LED) and can be used for switching purposes via an acknowledgement output (z24). However, the pressure control can also be switched off so that there is only flow control, independent of $p_{\text {actual }}$.

Pressure sensor connection versions

Mode setting (DIL switch, daughter card)

DIL 16... 0

DIL no.	Status	Function		
0	-	without function		
1	ON	Pressure sensor signal		$1 \ldots . .6 \mathrm{~V} / 0 . .10 \mathrm{~V}$
	OFF			4... 20 mA
2	ON	Pressure sensor amplification		$p_{\text {SYS }}{ }^{2 / 2} \stackrel{\sim}{=} \sim p_{\text {NOM }}{ }^{3)}$
	OFF			$p_{\mathrm{SYS}} \xlongequal{\wedge} \sim 0.5 p_{\mathrm{NOM}}$
3	ON	Cable break monitoring pressure sensor		On
	OFF			Off
4	ON	Pressure controller		On
	OFF			Off
5	ON	Valve output signal		not inverted
	OFF			inverted
6	ON	Pressure build-up		normal
	OFF			reduced ${ }^{1)}$
7	ON	D	Pressure	normal
	OFF		reduction	reduced ${ }^{1)}$
8	ON		Share high	(9, $10=$ OFF)
9	ON		Share medium	(8, $10=\mathrm{OFF}$)
10	ON		Share low	(8, 9 = OFF)
11	ON	I	Share = 0	(12 = OFF)
12	ON		Share available	(11 = OFF)
13	ON	P	Reduced pressure reduction	Valve opening in case of pressure reduction <approx. 15\%
	OFF			ineffective
14	ON		Share low	(16 = ON/15 = OFF)
15	ON		Share medium	(14,16 = OFF)
16	ON		Share high	(14,15 = OFF)

${ }^{1)}$ With DIL 6 and $7=$ OFF, DIL $8 . . .10$ is ineffective
${ }^{2)} p_{\text {SYS }}=$ System pressure
${ }^{3)} p_{\text {NOM }}=$ Nominal sensor pressure

General notes:

Setting during the commissioning is effected using potentiometers and HEXCODE switches on the front plate as well as using DIL switches on the daughter card bottom side.
Test points for voltage measurements as well as LED displays are located on the front plate. The measured values generally refer to the test point 0 V . The test points may only be loaded with measuring instruments $R_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$. Overload impairs the control function and/or the printed circuit board is damaged.

Before the commissioning, the basic settings of the as-delivered state are to be checked.
In the card comparison, proceed in the order of the points shown:

A: Adjustment of the valve zero point (basic card front plate)

1) DIL 4 OFF (pressure controller OFF)
2) Applying the voltage and pressure supply
3) Command value specification $Q=0 \mathrm{~V}$
4) Use the "Zero"
potentiometer to bring the cylinder to a standstill

B: Pressure sensor comparison

1) Sensor type selection
$\begin{aligned} & \text { DIL } 1 \mathrm{ON} \triangleq U_{\mathrm{A}}=1 \ldots 6 \mathrm{~V} / 0 \ldots 10 \mathrm{~V} \\ & \mathrm{OFF} \xlongequal{\wedge} U_{\mathrm{A}}=4 \ldots 20 \mathrm{~mA}\end{aligned}$
2) Sensor amplification selection

DIL 2 ON if $p_{\text {SYS }} \sim p_{\text {NOM }}$ OFF if $0.5 \cdot p_{\text {NOM }} \leqq p_{\text {SYS }} \leqq p_{\text {NOM }}$
3) Hydraulic supply OFF
4) Zero point calibration with potentiometer " $P_{\text {Zero }}$ " (at TP " $-1=0 \mathrm{~V}$)
5) Hydraulic supply ON - max. system pressure
6) Sensitivity adjustment with potentiometer " $\longrightarrow \mathrm{P}$ " (at TP "OP" $=10 \mathrm{~V}$)

Ideal development

Adjustment protocol

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 5 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

p/Q closed-loop control amplifier

Type VT-VACAP-500-2X/V0/...

Component series 2 X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Technical data
Connection scheme
Additional information
Examples
Functional presentation
Special function
Setting instructions
Controller adjustment
Page
1
2
2
3

Ideal development
Adjustment table
Unit dimensions ,

Project planning / maintenance instructions / additional information

Features

- Suitable for controlling high-response valves with installed electronics
- Amplifier with additional electronics (daughter card)
- Analog amplifiers in Europe format for installation in 19" racks
- Valve position control with PID behavior
- Outputs short-circuit-proof
- External shut-off for pressure controller
- Suitable for pressure sensors (1... 6 V, $0 . . .10 \mathrm{~V}, 4 . . .20 \mathrm{~mA}$), see data sheet 30271
- Supply for pressure sensors
- Cable break detection for pressure sensor

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number	For high-response valves
VT-VACAP-500-20/V0	0811405157	All valve types with installed electronics
VT-VACAP-500-20/V0/2CH	0811405158	

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation!

Front plate

* Daughter card only attached with 2-channel variant

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $\mathrm{z} 2-\mathrm{b} 2$	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)	
Smoothing capacitor, separately at $\mathrm{z2}$ - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)	
Current consumption, max. 0811405157	160 mA	
0811405158	220 mA	
	Basic card	Daughter card
$\begin{aligned} & \hline \text { Pressure sensor }(1 \ldots 6 \mathrm{~V} / 0 \ldots 10 \mathrm{~V}) \\ & \text { Pressure sensor }(4 \ldots 20 \mathrm{~mA}) \\ & \hline \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { b26 - Ref. b28 } \\ \text { b24 - Ref. b28 } \\ \hline \end{array}$	$\begin{aligned} & \hline \text { b16 - Ref. } \\ & \text { b18z14 - Ref. b18 } \\ & \hline \end{aligned}$
Pressure sensor supply - V	z6 (+15 V)/b8 (0 V)	
Pressure command value (0...10) V	b12/b14 (0 V)	z12/z10 (0 V)
External controller shut off	z28: $6 . . .40 \mathrm{~V}=$	b10: $6 \ldots . .40 \mathrm{~V}=$
External controller enquiry	z26: $24 \mathrm{~V}=$, max. 20 mA	z24: $24 \mathrm{~V}=$, max. 20 mA
Monitor signal $p_{\text {actual }}$	z16: $0 \ldots .10 \mathrm{~V}=$	z18: $0 \ldots . .10 \mathrm{~V}=$
External channel change mode	z30: $6 . . .40 \mathrm{~V}=$	
Flow command value	$\begin{aligned} & \text { z22: } 0 \ldots \pm 10 \mathrm{~V}= \\ & \text { b22: } 0 \mathrm{~V} \end{aligned}$	$\begin{aligned} & \mathrm{z} 20: 0 \ldots \pm 10 \mathrm{~V}= \\ & \mathrm{b} 22: 0 \mathrm{~V} \end{aligned}$
Potentiometer supply	z32: +10 V, max. 10 mA	
Output	$\begin{aligned} & U_{\mathrm{Al}} ; \mathrm{b} 4 / \mathrm{b} 8(0 \mathrm{~V}): 0 \ldots \pm 10 \mathrm{~V} \\ & \text { Load } R_{\mathrm{L}}>1 \mathrm{k} \Omega \end{aligned}$	$\begin{aligned} & U_{\text {All }} ; \mathrm{b} 6 / \mathrm{b} 8(0 \mathrm{~V}): 0 \ldots \pm 10 \mathrm{~V} \\ & \text { Load } R_{\mathrm{L}}>1 \mathrm{k} \Omega \end{aligned}$
Cable: Pressure sensor Valve PLC signals	$\begin{aligned} & 4 \times 0.5 \mathrm{~mm}^{2} \text { (shielded) } \\ & 5 \times 0.5 \mathrm{~mm}^{2} \text { (shielded) } \\ & 0.5 \mathrm{~mm}^{2} \text { (shielded) } \\ & \hline \end{aligned}$	
LED displays/channel	Pressure controller OFF Controller is working Cable break pressure transducer (both a.-m. LEDs are flashing)	
Special features	Cable break monitoring for pressure sensor Test points for important characteristics External pressure controller shut-off External channel change mode Different pressure sensors possible	
Circuit board format mm	($100 \times 160 \times$ approx. 35) / (W x L $\times \mathrm{H}$) Europe format with front panel 7 TE	
Plug-in connection	Connector DIN 41612 - F32	
Ambient temperature $\quad{ }^{\circ} \mathrm{C}$	0...+70	
Storage temperature range $\quad{ }^{\circ} \mathrm{C}$	-20...+70	
Weight m	$0811405157-0.35 \mathrm{~kg}, 0811405158-0.44 \mathrm{~kg}$	

Connection scheme

Amplifier - Valve

Pressure sensor connection: Example channel II

Additional information

Applications

The "1-channel p / Q control card" consists of the basic card in Europe format with DC/DC converter and front plate. With the "2-channel p / Q control card", this basic card contains a p / Q daughter card with identical circuit and a joint front plate. The supply voltage is $24 \mathrm{~V}=$. The voltage of the valve to be regulated is not supplied via this card.
Input variables for the cards are the valve position command value, the pressure command value, the actual pressure value and possible control mode signals. The pressure sensors with voltage interface receive their voltage supply from the card (z6/z8). At the card, pressure sensors with voltage and current signal can be connected.

The pressure command value can be specified by means of a potentiometer. The potentiometers can be supplied from the card (z32/b12).
For control and comparison, the front plate and the circuit board comprise test points for the most important characteristics.
The circuit of the " 2 -channel card" is designed so that the controllers on basic and daughter card work in a completely independent manner. In this mode, the card is suitable for controlling 2 valves with integrated electronics (see example 2, page 6).
An additional channel mode circuit allows for the considerable extension of the possible applications of the described card (see example 1, page 6).

Examples

Example 1

Channel mode "joint output"

Example 2

Channel mode "separate outputs"

Functional presentation

Function and structure of the p / Q controller card are shown as block diagram (see page 3).
Pressure command value: It is specified by the user in the form of voltage ($0 . . .10 \mathrm{~V}$; b12/b14 and/or z10/z12). You can do so by means of a potentiometer which can be supplied by the card (z32/b8).
Actual pressure value: It is optionally recorded by pressure sensors with voltage interface ($1 \ldots 6 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$) or current interface ($4 . . .20 \mathrm{~mA}$) (which can be switched).
The actual pressure value can be tapped as monitor signal at $z 16$ and/or $z 18$. The command value is compared to the actual value. The variation and the differentiated actual value act on a PID controller. The controller output signal acts on the limiter circuit which influences the position command value. If the actual pressure value is smaller than the pressure command value, the controller signal is larger than the specified position command value. It is thus not influenced by the limiter; there is simple flow control of the valve.

If the pressure command value is reached, the limiter takes effect according to the actual pressure value so that the input signal for the valve position control is changed so that $p_{\text {command }}-p_{\text {actual }}=0$ is maintained.
Controller characteristic: The PID controller and the derivative element can be roughly set by means of DIL switches (printed circuit board) and finely by means of front plate switches.
Controller display: The controller function is displayed by means of LED and can be used for switching purposes via an acknowledgement output.
Line break: Simultaneous flashing of the two yellow LEDs and the switching of output b30 and/or b32 signalizes a pressure sensor line break.
Controller shut-off: The controller can be shut off by means of an external signal ($6 \ldots . .40 \mathrm{~V}=$).
Channel selection: Is only possible for the 2-channel card. Detailed explanation (see below).

Special function "channel selection" of the "2-channel control card"

This special function can be used in all cases in which two actual pressure values have to act on one control distance via their two independent controllers. An external mode signal ($\mathrm{z} 30 / 6 \ldots 40 \mathrm{~V}=$) is used to select basic or daughter
p / Q control signal on the control distance. The DIL switch 0 must be ON; otherwise, this special function is blocked. The control signal of one channel must be inverted (DIL 5).

DIL 0	Mode signal z30	Basic card I	Daughter card II	DIL 5 I	DIL 5 II
ON	H	OFF	ON - out I (b4/b2)	ON	OFF
ON	L	ON - out I (b4/b2)	OFF	ON	OFF
OFF	X	ON - out I (b4/b2)	ON - out II(b6/b8)	X	X
X					

X - without influence

Principle of the channel selection

Setting instructions

A: General instructions

- The measured values generally refer to the ground at the test point " 0 V "
- Indication of the direction of rotation for potentiometers: cw - clockwise ccw - counterclockwise
- Before the commissioning, the position of the setting elements is to be checked according to the transfer condition (see adjustment table page 11)
- Proceed in the order b) to f) (page 10).

B: Mode settings

DIL no.	Status	Function
0	ON	Both controllers act on output 1
	OFF	Controller 1 and 2 act on output 1 and/or 2 , irrespective of each other
	ON	Pressure sensor $1 . . .6 \mathrm{~V} / 0 \ldots 10 \mathrm{~V}$
	OFF	Pressure sensor 4...20 mA
	ON	Actual p value amplification $\left.p_{\text {sys }}^{1)} \hat{=} \sim p_{\text {nom }} 2\right)$
	OFF	Actual p value amplification $p_{\text {sys }} \hat{\sim} \sim 0.5 \cdot p_{\text {nom }}$
4	ON	Cable break detection active
	OFF	Cable break detection inactive
5	ON	p controller active
	OFF	p controller shut off, only the Q signal is analyzed
	ON	p / Q output signal not inverted
	OFF	p / Q output signal inverted
	Sysem	pressure

1) $p_{\text {sys }}=$ System pressure
2) $p_{\text {nom }}=$ Nominal sensor pressure

C: Pressure sensor comparison

- Set the sensor type (DIL 1) and the gain factor (DIL 2)
- The zero point comparison is effected using the potentiometer $p_{\text {zero }}$ in order to achieve $0 \mathrm{~V}(\pm 10 \mathrm{mV})$ at the signal input with pressure-relieved pressure transducer
- The sensitivity is aligned using the potentiometer $p_{\text {actual }}$ at system pressure (+10\%/-20\%).

D: Flow zero point

The zero position of the valve is set using the potentiometer $Q_{\text {zero }}(\pm 10 \%)$. Due to the valve amplifier integrated in the valve, direct adjustment at the amplifier is not intended.

E: Comparison of the position signal

- Shut off the p controller (DIL 4)
- Set the command value amplification using the potentiometer $Q_{\max .}$.

F: Optimization of the control characteristic

DIL no.	Status	Function		
6	ON	D	Pressure	normal
	OFF		build-up	reduced ${ }^{1)}$
7	ON		Pressure reduction	normal
	OFF			reduced ${ }^{1)}$
8	ON		Share high	(9, $10=$ OFF)
9	ON		Share medium	(8, $10=$ OFF)
10	ON		Share low	(8, 9 = OFF)
11	ON	1	Share = 0	(12 = OFF)
12	ON		Share available	(11 = OFF)
13	ON	P	Reduced pressure reduction	Valve opening in case of pressure reduction < approx. 15%
	OFF			ineffective
14	ON		Share low	(16 = ON/15 = OFF)
15	ON		Share medium	(14,16 = OFF)
16	ON		Share high	(14,15 = OFF)

1) With DIL 6 and $7=$ OFF, DIL 8 is ineffective

G: Test points

The test points of the card may only be loaded with a $R_{\mathrm{L}}>10 \mathrm{k} \Omega$. in case of overload, the function of the control is impaired and/or the card is destroyed. The test points are located on the front plate and laterally on the printed circuit board.
Basic card and daughter card have separate test points each, however the identical reference ground.

Controller adjustment

The P, I and D shares of the closed-loop control amplifier are to be optimized according to the properties of the control distance, the disturbance variables and the static and dynamic requirements on the control result.

1) Pressure controller ON - DIL 4 ON
2) Connection of an oscilloscope at the test point " $p_{\text {actual }}$ "
3) Usefully connection of a 2nd oscilloscope channel at the terminals " $p_{\text {command }}$ "
4) DIL 6 and DIL 7 serve to compensate dynamic differences in the pressure build-up and reduction in the system
DIL 6 ON = Normal application
OFF = Special application
DIL 7 ON = Normal application
OFF = Special application
5) DIL 13 reduces the pressure reduction by means of a max. valve opening < approx. 15%

$$
\mathrm{ON}=\text { Special application }
$$

OFF = Normal application
6) Aim of the controller optimization

An optimum between change over characteristic (overshooting tendency with excessive static amplification) and static accuracy (control error with starting pressure cut off) is to be achieved (a).

Procedure (see table, page 11):
An increase in the \mathbf{P} share of the controller increases the dynamic of the control behavior (b). In case of excessive gain, the tendency to oscillate increases (c). Limitation of the I share reduces the static gain. With increasing static gain, the control deviation is reduced (d). The D share can be used to influence the transition behavior (minimization of the tendency to oscillate); thus, the command value is only reached after a longer transition time (f).

Ideal development

| | Problem:
 P share too small
 Solution:
 \rightarrow Rotate K_{p} against F (fine adjustment)
 \rightarrow P gain $>$ |
| :--- | :--- | :--- | :--- |

Adjustment table

Unit dimensions (dimensions in mm)

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protective circuits.
- The cable lengths and cross-sections specified on page 4 must be complied with.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

$\Delta \mathrm{p} / \mathrm{Q}$ controller

Type VT-VACAF

Component series 1X

Table of contents

Contents

Features

Ordering code, accessories
Front plate
Block diagram with pin assignment
Wiring diagram with valve amplifier card
Wiring diagram - Valve with installed electronics
Technical data
Functional principle
Additional information
Examples
Function
Settings DIL switch
Commissioning and adjustment
Adjustment protocol
Device dimensions
Project planning / maintenance instructions / additional information

Features

- Suitable for controlling high-response valves
- Amplifier with additional electronics (daughter card)
- Analog amplifiers in Europe format for installation in 19 " racks
- Pressure differential controller (force controller) with PID behavior
- Short-circuit-proof outputs
- External shut-off for pressure controller
- Monitor signal for controller
- Separate acceleration and braking ramp
- Ramps can be separately adjusted and switched off
- Adjustable area adjustment for cylinder
- Suitable for pressure sensors ($0 . . .10 \mathrm{~V}, 4 \ldots 20 \mathrm{~mA}$), see data sheet 30271
- Supply for pressure sensors
- Cable break detection for pressure sensor

Notice:

The photo is an example configuration.
The delivered product differs from the figure.

Ordering code, accessories

Preferred types

Amplifier type	Material number
VT-VACAF-500-10/V0	0811405147

Suitable card holder:

- Open card holder VT 3002-1-2X/32F
(see data sheet 29928).
Only for control cabinet installation.

Front plate

Technical data (For applications outside these parameters, please consult us!)

Supply voltage U_{B} at $z 2-b 2$	Nominal $24 \mathrm{~V}=$ Battery voltage 21... 40 V , Rectified alternating voltage $U_{\text {eff }}=21 \ldots 28 \mathrm{~V}$ (one-phase, full-wave rectifier)
Smoothing capacitor, separately at z 2 - b2	Recommendation: Capacitor module VT 11110 (see data sheet 30750) (only necessary if the ripple of $U_{B}>10 \%$)
Current consumption, max. mA	250
Command value Q	$\left.\begin{array}{l}\text { b20: } 0 \ldots \pm 10 \mathrm{~V} \\ \mathrm{z} 20: 0 \ldots \pm 10 \mathrm{~V}\end{array}\right\}$ Differential amplifier $\left(R_{\mathrm{i}}=100 \mathrm{k} \Omega\right)$
Command value $p_{\text {diff }}$	
Actual value from the pressure sensor	
	b16: $0 \ldots+10 \mathrm{~V}$ b18: 0 V Differential amplifier b14: b30: $4 \ldots 20 \mathrm{~mA}$
Pressure sensor supply	$\begin{aligned} & \mathrm{z6}:+15 \mathrm{~V} \text {, max. } 100 \mathrm{~mA} \\ & \mathrm{z}:-15 \mathrm{~V}, \max .100 \mathrm{~mA} \\ & \hline \end{aligned}$
Pressure controller OFF	b10: $6 \ldots 40 \mathrm{~V}=$
External controller enquiry	z24: $24 \mathrm{~V} / 0.1 \mathrm{~A} \mathrm{max.}$,
Signal source	Supply $\pm 10 \mathrm{~V}$ from b32, z32 (10 mA) or external signal source
Monitor signal $F_{\text {actual }}$	z16: $\pm 10 \mathrm{~V}$
Error pressure sensor (cable break, signal lines)	b22: No error: $+U_{B}$; max. 100 mA Error: 0 V ५: LED"Ramp A OFF" and "Ramp B OFF" flash
Ramp times	$\begin{array}{\|ll} \hline \text { Min. } 350 \mathrm{~ms}(1) \\ \text { Max. } 5.6 \mathrm{~s} \mathrm{(16)} \end{array} \quad \begin{aligned} & 16 \text { steps } \\ & 350 \mathrm{~ms} / \text { step } \end{aligned}$
Ramp OFF	z22: $8 . . .40 \mathrm{~V}=$
	z26: $8 . . .40 \mathrm{~V}=$
Area adjustment cylinder	$\left.\begin{array}{l}\text { Min. 1:1 (1) } \\ \operatorname{Max.~1:4~(16)~}\end{array}\right\} 16$ steps,$~$
LED displays	red: Error UB red: Ramp A OFF red: Ramp B OFF green/yellow: green: Controller active yellow: Controller not active off: Controller OFF
Format of the printed circuit board mm	($100 \times 160 \times$ approx. 35) / (W x L x H) Europe format with front plate 7 TE
Plug-in connection	Connector DIN 41612 - F32
Ambient temperature ${ }^{\circ} \mathrm{C}$	0...+70
Storage temperature range $\quad{ }^{\circ} \mathrm{C}$	-20...+70
Weight	0.44 kg

Notice:

Power zero b2 and control zero b12 or b14 or z28 must be separately led to the central ground (neutral point).

Functional principle

Force control

Additional information

Applications

As opposed to p / Q control, pressure measurement in the A and B line of a hydraulic actuator by means of the "Pressure differential controller" printed circuit board can be used to allow for $\Delta p / Q$ control of the actuator.
Consequently, this control structure is used everywhere where you don't only have to control the pressure in one direction of motion of the actuator against a constant pressure but where there is also pressure control against a changing pressure, i.e. in all cases, in which force control is necessary. The actual value adjustment allows for the connection of pressure sensors with $0 . .10 \mathrm{~V}$ and $4 . . .20 \mathrm{~mA}$ output signal.

The command value ramps allow for the design of command value steps of $\Delta p_{\text {command }}$ as ramp function. The error monitoring logic detects cable break of the signal lines of the sensors and errors in the voltage supply. The pressure control circuit can also be switched off externally (flow control). To control the actuator, this printed circuit board is to be coupled with a valve amplifier card or a valve with installed electronics.

Examples

Example 1

Welding machine

Example 2

Vehicle twisting test stand

Function

Input variables are the differential pressure Δp and flow Q command values. As actual values, pressure differential and valve spool path are fed back.
The $\Delta p / Q$ controller takes effect:
a) As long as $\Delta p_{\text {command }}>\Delta p_{\text {actual }}$ like a flow control, i.e. the pressure control does not yet take effect;
b) If $\Delta p_{\text {command }}=\Delta p_{\text {actual }}$, the pressure control takes effect, i.e. a limiter superimposes the command value Q.

The command value Q corresponds to the spool path as long as the pressure control does not take effect, yet, i.e. $\Delta p_{\text {command }}>\Delta p_{\text {actual }}$ or if the pressure controller is switched off. The command value Q may range between $U_{\mathrm{E}}=0 \ldots \pm 10 \mathrm{~V}$.

Functional examples

$Q_{\text {command }}$	Direction	$p_{\text {diff. command }}$	Direction	\| Track traveling	Force control	
+5.0 V	$\\| \longrightarrow$	+3.5 V	$\longmapsto \longrightarrow$	with $50 \% v_{\text {max }}$.	After track traveling to 35% of $p_{\text {diff. max. }}$.	
+7.5 V	$\\| \square$	-2.0 V	\square	with $75 \% v_{\text {max }}$.	Not possible	
-3.3 V	$\square \leftrightharpoons$	-4.8 V	$\ldots 5$	with $33 \% v_{\text {max }}$.	After track traveling to 48\% of $p_{\text {diff. max. }}$.	
-10.0 V	\longmapsto	+8.0 V	$\longmapsto \longrightarrow$	with $v_{\text {max }}$.	Not possible	
	A command value of at least $\pm 0.3 \mathrm{~V}$ must be specified!					

The numerical values listed in the table are examples, the signs of the values are decisive.

Settings DIL switch

DIL no.	Status	Function			
0	ON	External ramp control possible		A	
	OFF	+ $p_{\text {diff. command }}$ via ramp			
1	ON	$4 . . .20 \mathrm{~mA}$ pressure sensors			
	OFF	$0 . . .10 \mathrm{~V}$ pressure sensors			
2	ON	External ramp control possible		B	
	OFF	$+p_{\text {diff. command }}$ via ramp			
3	ON	Cable break detection p sensor ON			
	OFF	Cable break detection OFF			
4	ON	External controller shut-off possible			
	OFF	External controller shut-off not possible			
5	ON/OFF	Inversion of the hydraulic direction of action $\rightarrow+Q_{\text {Command }}$ must extend the cylinder			
6	OFF	$\begin{array}{\|c} 0 \\ \stackrel{0}{\omega} \\ \stackrel{\omega}{5} \\ 0 \end{array}$	Switch combinations, see table 1		
7	OFF				
8	OFF				
9	OFF				
10	OFF				
11	OFF		Switch combinations, see table 2		
12	ON				
13	OFF				
14	ON		Reduced pressure decrease with $p_{\text {diff. actual }}>p_{\text {diff. command }}$ Valve opening max. 20\%		
	OFF		No reduced pressure reduction		
15	ON		Switch combinations, see table 3		
16	OFF				

Ramps
DIL

Table 1
Using the DIL switches $6 \ldots 10$, the setting of the hex switch K_{D} (front plate) can be reduced.
The setting can be reduced in a direction-dependent form.
Step 1 is the lowest, step 8 the highest reduction.

	K_{D}					
	DIL 6	DIL 7	DIL 8	DIL 9	DIL 10	Effect
	OFF	OFF	OFF	OFF	OFF	No influence on the hex switch K_{D}
	OFF	OFF	ON	OFF	OFF	
	OFF	ON	OFF	OFF	OFF	
	OFF	ON	ON	OFF	OFF	
	ON	OFF	OFF	OFF	OFF	
	ON	OFF	ON	OFF	OFF	
	ON	ON	OFF	OFF	OFF	
	ON	ON	ON	OFF	OFF	
1	OFF	OFF	OFF	OFF	ON	Direction 1
	OFF	OFF	OFF	ON	OFF	Direction 2
	OFF	OFF	OFF	ON	ON	Direction $1+2$
2	ON	OFF	OFF	OFF	ON	Direction 1
	ON	OFF	OFF	ON	OFF	Direction 2
	ON	OFF	OFF	ON	ON	Direction $1+2$
3	OFF	ON	OFF	OFF	ON	Direction 1
	OFF	ON	OFF	ON	OFF	Direction 2
	OFF	ON	OFF	ON	ON	Direction $1+2$
4	ON	ON	OFF	OFF	ON	Direction 1
	ON	ON	OFF	ON	OFF	Direction 2
	ON	ON	OFF	ON	ON	Direction $1+2$
5	OFF	OFF	ON	OFF	ON	Direction 1
	OFF	OFF	ON	ON	OFF	Direction 2
	OFF	OFF	ON	ON	ON	Direction $1+2$
6	ON	OFF	ON	OFF	ON	Direction 1
	ON	OFF	ON	ON	OFF	Direction 2
	ON	OFF	ON	ON	ON	Direction $1+2$
7	OFF	ON	ON	OFF	ON	Direction 1
	OFF	ON	ON	ON	OFF	Direction 2
	OFF	ON	ON	ON	ON	Direction $1+2$
8	ON	ON	ON	OFF	ON	Direction 1
	ON	ON	ON	ON	OFF	Direction 2
	ON	ON	ON	ON	ON	Direction $1+2$

Direction $1 \triangleq$ force reduction
Direction $2 \triangleq$ force build-up

Table 2

DIL 11	DIL 12	DIL 13	Effect
OFF OFF	OFF	OFF	OFF
ON	No gain reduction to hex switch K		
ON	OFF	ON	Low gain
OFF	ON	OFF	Medium gain
ON	ON	OFF	
ON	OFF	OFF	High gain
ON	ON	ON	Forbidden
OFF	OFF	OFF	

Table 3

DIL 15	DIL 16	Effect
OFF	OFF	No influence on the hex switch K_{I}
OFF	ON	I share $=0$
ON	ON	
ON	OFF	I max. $\left(\hat{=} \mathrm{K}_{\mathrm{I}}=16\right)+\mathrm{K}_{\mathrm{I}}$ current

Commissioning and adjustment

General notes:

Setting during the commissioning is effected using potentiometers and HEXCODE switches on the front plate as well as using DIL switches on the printed circuit board. Test points for voltage measurements as well as LED displays are located on the front plate. The measured values generally refer to the test point 0 V . The test points may only be loaded with measuring devices $R_{\mathrm{L}} \geqq 10 \mathrm{k} \Omega$.

Overload impairs the control function and/or the printed circuit board is damaged. Before the commissioning, the basic settings of the as-delivered state are to be checked. In the card adjustment, proceed in the order of the points shown (see page 13).

- Electrical

According to connection diagram, page 4 and/or 5

- Hydraulic

Pressure sensor A for piston chamber
Pressure sensor B for annulus area.

- According to the table, page 15, column as-delivered state.
-Carry out the settings according to the table, page 10.
- Set an area ratio 1:1.
- System depressurized: Zero point adjustment \rightarrow Potentiometer $p_{\text {zero }} \rightarrow \mathrm{TP}_{\mathrm{P} \text { actual }}=0 \mathrm{~V}$.
- Max. system pressure: Gain adjustment \rightarrow Potentiometer $\longrightarrow \mathrm{TP}_{\mathrm{P} \text { actual }}=10 \mathrm{~V}$.
- Set the hex switch to the area ratio of the cylinder; potentiometer to ccw. This potentiometer is used for the fine tuning during the controller adjustment.
- Specification of the max. command value (e.g. 7 V)
\rightarrow Potentiometer $\longrightarrow Q_{\text {max. }} \rightarrow$ Adjustment to 10 V at TP- $Q_{\text {Command }}$.
- Specification $Q_{\text {Command }}=0 \mathrm{~V} \rightarrow$ The forces at the cylinder must be balanced (i.e. pressure ratio $p_{K}: p_{\mathrm{R}}$ must correspond to the ratio $\mathrm{A}_{\mathrm{K}}: \mathrm{A}_{\mathrm{R}}$).
- Working in the control loop
\rightarrow Specification of command value steps $p_{\text {diff }}$
(e.g. $30 \% \rightarrow 70 \%$ and $-20 \% \rightarrow-60 \%$)
\rightarrow Comparison of command and actual value (see table, page 14)
\rightarrow Correction/adjustment of the parameters according to tables 1 to 3
\rightarrow Fine correction area ratio.

Adjustment protocol

Created by

Date

Project planning / maintenance instructions / additional information

- The amplifier card may only be unplugged and plugged when de-energized.
- The distance to aerial lines, radios and radar systems must be sufficient (>1m).
- Do not lay solenoid and signal lines near power cables.
- For signal lines and solenoid conductors, we recommend using shielded cables.

The cable shield must be connected to the control cabinet extensively and as short as possible.

- The valve solenoid must not be connected to free-wheeling diodes or other protection circuits.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

4/3 proportional directional valve with integrated digital electronics and
 field bus interface (IFB-P)

RE 29048

Type 4WREF

Edition: 2013-02
Replaces: 12.12

Features

- Direct operated proportional directional valve with integrated digital electronics and field bus interface (Integrated Field Bus IFB-P)
- Operation by means of proportional solenoids with central thread and detachable coil
- Position-controlled valve control spool
- Analog interface for command and actual value
- Command value (flow) analog or via bus
- Design for CAN bus with CANopen protocol DS 408 or Profibus-DP
- Quick commissioning via PC and WIN-PED 6 commissioning software
- Sizes 6 and 10
- Component series 2 X
- Maximum operating pressure 315 bar
- Maximum flow: $80 \mathrm{I} / \mathrm{min}$ (size 6)
- Maximum flow: $180 \mathrm{I} / \mathrm{min}$ (size 10)

Contents

Features 1
Ordering code 2
Symbols 3
Function, section 4,5
Technical data 5,6
Integrated electronics (IFB-P) $7 \ldots 9$
Characteristic curves 10 ... 15
Unit dimension 16 ... 18
Accessories 19 ... 20
Additional information 21

Ordering code

01	02	03	04	05	06	07		08		09	10	11	12
4	WRE	F				2X	/	V	-	24			

01	4 main ports	4
02	Proportional directional valve	WRE
03	With integrated digital electronics and field bus interface	F
04	Size 6	6
	Size 10	10
05	Symbols e.g. E, E1, V etc.: possible design see page 3	

Rated flow for size 6

06	$81 / \mathrm{min}$	$\mathbf{0 8}$
	$16 \mathrm{I} / \mathrm{min}$	$\mathbf{1 6}$
	$321 / \mathrm{min}$	$\mathbf{3 2}$

Rated flow for size 10

06	$251 / \mathrm{min}$	$\mathbf{2 5}$
	$501 / \mathrm{min}$	$\mathbf{5 0}$
	$751 / \mathrm{min}$	$\mathbf{7 5}$
07	Component series $20 \ldots 29(20 \ldots 29:$ Unchanged installation and connection dimensions $)$	$\mathbf{2 X}$
08	FKM seals	
09	Supply voltage 24 V	\mathbf{V}

Bus interface

10	CANBus DS 408	\mathbf{C}
	Profibus DP V0/V1	\mathbf{P}

Electrical interface

11	Command value $\pm 10 \mathrm{~V}$	A1
	Command value 4 to 20 mA	F1
12	Further details in the plain text	

Symbols

Type 4WREF...E...

Type 4WREF...W...

Type 4WREF...V...

Control spool symbols

With symbols E1 and W1:
$\begin{array}{ll}\mathrm{P} \rightarrow \mathrm{A}: \boldsymbol{q}_{\mathrm{v} \max } & \mathrm{B} \rightarrow \mathrm{T}: \boldsymbol{q}_{\mathrm{v}} / 2 \\ \mathrm{P} \rightarrow \mathrm{B}: \boldsymbol{q}_{\mathrm{v}} / 2 & \mathrm{~A} \rightarrow \mathrm{~T}: \boldsymbol{q}_{\mathrm{v} \max }\end{array}$

Function, section

Set-up

The valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with compression springs (3 and 4) and spring plates (8 and 9)
- Coils (5 and 6) and pole tubes (10 and 11) with central thread
- Position transducer (7)
- Integrated digital control electronics IFB-P (12)

Functional description

With de-energized solenoids (5 and 6), the control spool (2) is brought into the central position by the compression springs (3 and 4) between the spring plates (8 and 9) (with \vee control spool without spring plate). With \vee control spools, the mechanical zero position does not correspond to the hydraulic one.

Functions:

- Control of the valve spool position
- The command value can alternatively be specified via an analog interface (X1) or via the field bus interface (X2, X3).
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X2, X3).
- The controller parameters are set via the field bus.

唯 Notice! The PG fitting (13) must not be opened. Mechanical adjustment of the adjustment nut located below is prohibited and damages the valve!

呢 Notice! Due to the design principle, internal leakage is inherent to the valves and may increase over the life cycle.
The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve is to be installed.

Function, section

The integrated digital electronics enables the following fault detection:

- Undervoltage
- Cable break in position transducer (7)
- Communication error
- Watchdog
- Cable break in command value input (only with current interface)
The following additional functions are available:
- Ramp generator
- Internal command value profile
- Enable function, digital
- Overlap compensation
- Zero point correction

WIN-PED PC program (version 6 or higher):

To implement the project planning task and to parameterize the IFB-P valves, the user may use the WIN-PED commissioning software.

- Parameterization
- Diagnosis
- Convenient data management on a PC

System requirements

- IBM PC or compatible system
- Windows 2000 or Windows XP
- RAM (recommendation: 256 MB)
- 150 MB of available hard disk capacity

Notice

The "WIN-PED" PC program is not included in the scope of delivery. It can be downloaded on the Internet free of charge! (See page 18)

Technical data

(for applications outside these parameters, please consult us!)

1) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components. For the selection of the filters, see www.boschrexroth.com/filter.

Technical data

(for applications outside these parameters, please consult us!)

Hydraulic fluid	Classification	Suitable sealing materials	Standards
Mineral oils and related hydrocarbons	HL, HLP	NBR, FKM	DIN 51524
[fRer Important information on hydraulic fluids!			
- For more information and data on the use of other hydraulic fluids,			
refer to data sheet 90220 or contact us!			
There may be limitations regarding the technical valve data (tem-			
perature, pressure range, life cycle, maintenance intervals, etc.)!			
The flash point of the hydraulic fluid used must be 40 K higher			
than the maximum solenoid surface temperature.			

electric			
Duty cycle ${ }^{1)}$		\%	100
Supply voltage	- Nominal voltage	VDC	24
	- Lower limit value	VDC	19.4
	- Upper limit value	VDC	35
	- Maximum admissible residual ripple	Vpp	2
Total current consumption	- $I_{\text {max }}$	A	2
	- Impulse current	A	3
Command and actual value signals	- Voltage "A1"	V	± 10
	- Current "F1"	mA	4 to 20
Converter resolution (command/actual value signals)		Bit	10
Maximum coil temperature ${ }^{2)}$		${ }^{\circ} \mathrm{C}$	Up to 150
Protection class of the valve according to EN 60529			IP 65 with mounted and locked plug-in connectors
EMC (electromagnetic compatibility)			Interference resistance prEN 50082-2:1994 Interference emission EN 50081-1:1992

1) Connect the valve to the supply voltage only when this is required for the functional processes of the machine.
2) Due to the temperatures occurring at the surfaces of the solenoid coils, the European standards ISO 13732-1 and EN ISO 4413 must be adhered to.

Integrated electronics (IFB-P), marking and adjustment elements

1 Material number
2 Production order number
3 Date of production
4 Serial number
5 Type designation
6 DIL switch for address and baud rate setting (position B0 on the right)

Electrical connection and allocation

Connector pin assignment X1, 6-pole + PE according to DIN EN 175201-804

Pin	Signal	Interface A1 pin assignment	Interface F1 pin assignment
A	Supply voltage	$24 \mathrm{VDC}(\boldsymbol{u}(\boldsymbol{t})=19.4$ to 35 V$)$; $\boldsymbol{I}_{\text {max }}=2 \mathrm{~A}$	
B		0 V	
C	Reference potential actual value	Reference potential actual value	
D	Differential amplifier input	$\pm 10 \mathrm{~V}$ command value; $\boldsymbol{R}_{\mathrm{e}}>50 \mathrm{k} \Omega$	4 to 20 mA command value; $\boldsymbol{R}_{\mathrm{e}}=100 \Omega$
E		Reference potential command value	
F	Measuring output	$\pm 10 \mathrm{~V}$ actual valve control spool value (limit load 5 mA)	4 to 20 mA actual valve control spool value (load resistance maximum 300Ω)
PE		Protective earthing conductor (directly connected to cooling element and valve housing)	

Connector pin assignment for CAN bus "X2"/"X3" (coding A), M12, 5-pole, pins/socket

Pin	Assignment
1	n. c.
2	n. c.
3	CAN_GND
4	CAN_H
5	CAN_L

Transmission rate kbit/s	20 to 1000
Bus address	1 to 127
CAN-specific settings:	

Connector pin assignment for Profibus DP "X2"/"X3" (coding B), M12, 5-pole, socket/pins

Pin	Assignment
1	+5 V
2	RxD/TxD-N (A line)
3	D GND
4	RxD/TxD-P (B line)
5	Shield

Transmission rate MBaud
up to 12 Bus address 1 to 126 Setting via DIL switch.
The +5 V voltage of the IFB-P serves to supply an external bus terminator (as required).

RE 29048, edition: 2013-02, Bosch Rexroth AG

Integrated electronics (IFB-P), settings for CANopen and Profibus DP

CANopen

B7	B6	B5	B4	B3	B2	B1	B0	HEX	Baud rate: B7, B6	Address range: B5 to B0
0	0	0	0	0	0	0	0	$00{ }^{1)}$	Standard 20 kBaud or re-programmed	1 = Standard or re-programmed
0	0	0	0	0	0	0	1	$\begin{aligned} & 01 \\ & \text { to } \end{aligned}$	20 kBaud	1 to 63
0	0	1	1	1	1	1	1	3 F		
0	1	0	0	0	0	0	0	40	125 kBaud	1 = Standard or re-programmed
0	1	0			0		1	$\begin{aligned} & 41 \\ & \text { to } \end{aligned}$	125 kBaud	1 to 63
0	1	1	1	1	1	1	1	7F		
1	0	0	0	0		0	0	80	250 kBaud	1 = Standard or re-programmed
1	0	0	0	0	0	0	1	$\begin{aligned} & 81 \\ & \text { to } \end{aligned}$	250 kBaud	1 to 63
1	0	1	1	1	1	1	1	BF		
1	1	0	0	0	0	0	0	CO	500 kBaud	1 = Standard or re-programmed
1	1	0	0	0	0	0	1	$\begin{aligned} & \text { C1 } \\ & \text { to } \end{aligned}$	500 kBaud	1 to 62
1	1	1	1	1	1	1	0	FE		
1	1	1	1	1	1	1	1	FF	250 kBaud	Monitor mode/programming mode $1 \text { = fixed }$

Profibus DP

B7	B6	B5	B4	B3	B2	B1	B0	HEX	Address range
0	0	0	0	0	0	0	0	$00{ }^{1)}$	125 = Standard or re-programmed
0	0				0		1	$\begin{aligned} & 01 \\ & \text { to } \end{aligned}$	1 to 126 with parameter channel
0	1	1	1	1	1	1	0	7 E	
1					0			$\begin{aligned} & 80 \\ & \text { to } \end{aligned}$	1 to 126 with parameter channel
1	1	1	1	1	1	1	0	FE	
1	1	1	1	1	1	1	1	FF	Monitor operation address 125

1) Factory setting

Connection of the bus terminator using the two lower switches (only with Profibus):

Left figure
Bus terminator not connected
Right figure: Bus terminator connected (both switches to "ON")

Integrated electronics (IFB-P), block diagram

[^26]
Characteristic curves size 6

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$) and $\boldsymbol{p}_{\mathrm{s}}=10 \mathrm{bar}$
Transition function with stepped electric input signals (4/3 valve version; V control spool)
Signal change in \% \rightarrow

Frequency response (with V control spool)

Flow/load function with maximum valve opening (with \vee control spool)

Bosch Rexroth AG, RE 29048, edition: 2013-02

Characteristic curves size 6

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$) and $\boldsymbol{p}_{\mathrm{s}}=10 \mathrm{bar}$

Pressure/signal characteristic curve (V control spool), $\boldsymbol{p}_{\mathrm{s}}=100 \mathrm{bar}$

$\leftarrow \frac{\boldsymbol{U}_{e}}{\boldsymbol{U}_{\mathrm{EN}}}$ in $\% \rightarrow$

Zero flow (with central control spool position - V control spool)

Characteristic curves size 6

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$ and $\boldsymbol{p}=100$ bar)

8 I/min rated flow

16 I/min rated flow

32 I/min rated flow

Bosch Rexroth AG, RE 29048, edition: 2013-02

Characteristic curves size 10

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$) and $\boldsymbol{p}_{\mathrm{s}}=10 \mathrm{bar}$

Transition function with stepped electric input signals (4/3 valve version; V control spool)
Signal change in $\% \rightarrow$

Flow/load function with maximum valve opening (with \vee control spool)

Characteristic curves size 10

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$) and $\boldsymbol{p}_{\mathrm{s}}=10$ bar
Frequency response (with V control spool)

Pressure/signal characteristic curve (V control spool),
$\boldsymbol{p}_{\mathrm{s}}=100 \mathrm{bar}$

$\leftarrow \frac{\boldsymbol{U}_{\mathrm{e}}}{\boldsymbol{U}_{\mathrm{EN}}}$ in $\% \rightarrow$

Zero flow (with central control spool position V control spool)

Characteristic curves size 10
(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$ and $\boldsymbol{p}=100$ bar)
25 I/min rated flow

50 I/min rated flow

75 I/min rated flow

Unit dimension for size 6:

(dimensions in mm)

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $9.81 \times 1.5 \times 1.78$ for ports $\mathrm{P}, \mathrm{T}, \mathrm{A}$ and B
5 Space required to remove the mating connectors
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804;
separate order, see page 19
8 Name plate
9 Machined valve contact surface,
porting pattern according to ISO 4401-03-02-0-05
Deviating from the standard:
Ports P, A, B, T $\varnothing 8$ mm
Bore G may not be required since there is no pin in the valve.

Notice!

The dimensions are nominal dimensions and subject to tolerances.

Unit dimension for size 10:

(dimensions in mm)

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $13.0 \times 1.6 \times 2.0$ for ports $\mathrm{P}, \mathrm{T}, \mathrm{T} 1, \mathrm{~A}$ and B
5 Space required to remove the mating connectors
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804; separate order, see page 19
8 Name plate
9 Machined valve contact surface, porting pattern according to ISO 4401-05-04-0-05

Notice!

The dimensions are nominal dimensions and subject to tolerances.

Unit dimensions

Hexagon socket head cap screws		$4 \times$ ISO $4762-\mathrm{M} 5 \times 50-10.9-\mathrm{fIZn}-240 \mathrm{~h}-\mathrm{L}$ Tightening torque $\boldsymbol{M}_{\boldsymbol{A}}=7 \mathrm{Nm} \pm 10 \%$ or $4 \times$ ISO $4762-\mathrm{M} 5 \times 50-10.9$ Tightening torque $\boldsymbol{M}_{\boldsymbol{A}}=8.9 \mathrm{Nm} \pm 10 \%$
Size 6	$4 \times$ ISO $4762-\mathrm{M} 6 \times 40-13000064$ Tightening torque $\boldsymbol{M}_{\boldsymbol{A}}=12.5 \mathrm{Nm} \pm 10 \%$ or $4 \times$ ISO $4762-\mathrm{M} 6 \times 40-10.9$ Tightening torque $\boldsymbol{M}_{\boldsymbol{A}}=15.5 \mathrm{Nm} \pm 10 \%$	R913000058
Size 10	Material number	

Notice: The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure!

Subplates	Data sheet
Size 6	45052
Size 10	45054

Accessories (not included in the scope of delivery)

	The following is required for the parameterization via PC:	CANopen	Profibus DP
1	Interface converter (USB)	VT-ZKO-USB/CA-1-1X/V0/0 Mat. no. R901071963	VT-ZKO-USB/P-1-1X/Vo/0 Mat. no. R901071962
2	Commissioning software	WIN-PED 6 Download from www.boschrexroth.de/IAC	
3	Connection cable, 3 m	D-Sub / M12, coding A Mat. no. R900751271	D-Sub / M12, coding B Mat. no. R901078053

Bosch Rexroth AG, RE 29048, edition: 2013-02

Accessories, port X1 (not included in the scope of delivery)

Mating connector for X1	Version	Material number
Mating connector according to DIN EN 175201-804 (6-pole)	Mating connector (plastic)	R900021267
	Mating connector (angular design)	R900217845

Mating connector for X1	Version	Material number
Mating connector according to DIN EN 175201-804 (6-pole)	Mating connector (metal)	R900223890

Accessories, CAN bus (A coding) (not included in the scope of delivery)
Description
X2
Round connector, 5-pole, M12, can be assembled
Straight mating connector in metal design
X3
Round connector, 5-pole, M12, can be assembled
Straight line connector in metal design

Accessories, Profibus (B coding) (not included in the scope of delivery)
Description
X2
Round connector, 5-pole, M12, can be assembled
Straight line connector in metal design
X3
Round connector, 5-pole, M12, can be assembled
Straight mating connector in metal design

Project planning/maintenance instructions/additional information

Product documentation for IFB-P

- Data sheet 29048 (this data sheet)
- Operating manual 29015-B
- CAN bus protocol description data sheet 29015-01-Z
- Profibus protocol description data sheet 29015-02-Z
- General information on the maintenance and commissioning of hydraulic components 07800/07900
- General operating instructions: Hydraulic valves for industrial applications 07600-B

Commissioning software and documentation on the internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. Repaired devices are returned with default settings. User-specific settings will not be applied. The machine end-user will have to retransfer the corresponding user parameters.

Notices:

- Connect the valve to the supply voltage only when this is required for the functional processes of the machine.
- Do not use electrical signals provided via control electronics (e.g. "No error" signal) for switching safety-relevant machine functions (see also EN ISO 13849 "Safety of machinery - safety-related parts of control systems").
- If electro-magnetic interference is to be anticipated, suitable measures must be taken to ensure the function (depending on the application, e.g. shielding, filtration)!
- For more information, refer to the operating instructions and the WIN-PED online help.

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Proportional directional valve, direct operated, with $p Q$ functionality

Type STW 0195, type STW 0196

STW 0195: \quad Size 6
Component series 2 X
STW 0196: Size 10
Component series 1X

Table of contents

Contents

Features

Ordering code, symbols
Set-up, function, section
Technical data
Electrical connections, allocation
Characteristic curves
Device dimensions
Accessories (not included in the scope of delivery)
Project planning/maintenance instructions/ additional information

Features

- Direct operated 3-way proportional valve with integrated IAC-P digital control electronics, for controlling a pressure in port A
- Completely adjusted unit consisting of position-controlled valve, pressure sensor and field bus connection
- Operation via a proportional solenoid with central thread and detachable coil
- Valve spool, position-controlled
- Integrated pressure sensor plate (optional)
- For subplate mounting: Porting pattern according to ISO 4401
- Analog interfaces for command and actual values
- Design for CAN bus with CANopen protocol DS 408 or Profibus DP
- Separate connectors for power supply and bus connection
- Quick commissioning via PC and WINPED commissioning software

Ordering code

Symbols

Type STW0195...
Type STW0196...

Set-up, function, section

Set-up

The IAC-P valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with compression spring (3)
- Solenoid and pole tube (4) with central thread
- Position transducer (5)
- Pressure sensor (6)
- Integrated IAC-P digital control electronics (7) with bus connection (X2) and central connector (X1).

Functional description

- If solenoids (4) are not operated, spool position $\mathrm{A} \rightarrow \mathrm{T}$ (with type STW 0196-1X/1 additionally $\mathrm{B} \rightarrow \mathrm{T}$)
- Functions:
- Flow control (\boldsymbol{Q})
- Pressure control (p)
- Substitutional closed-loop control $\mathbf{p / Q}$
- The command value can alternatively be specified via an analog interface (X1) or via the field bus interface (X2, X3).
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X2, X3).
- The controller parameters are set via the field bus (X2, X3).
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons.

The digital integrated control electronics enables the following fault detection: (diagnosis)

- Cable break of pressure sensor supply line (6)
- Undervoltage
- Cable break of position transducer (5)
- Communication error
- Watchdog
- Cable break of command value inputs

The following additional functions are available:

- Pressure ramp
- Internal command value profile
- Enable function analog/digital
- Error output 24 V

WINPED PC program
To implement the project planning task and to parameterize the IAC-P valves, the user may use the WINPED commissioning software (see accessories).

- Parameterization
- Diagnosis
- Comfortable data management on a PC
- PC operating systems: Windows 2000 or Windows XP

$Q_{\text {command }}$	Q control	p closed-loop control
$<12 \mathrm{~mA}$	$\mathbf{A \rightarrow T}$	Inactive
$>12 \mathrm{~mA}$	Substitutional closed-loop control: $(\mathrm{A} \rightarrow \mathrm{T}$ or $\mathrm{P} \rightarrow \mathrm{A})$	
	Q control ($Q_{\text {command }}$ with pressure limitation $(p$ command $)$	
	if pressure limitation is active, the following applies: Qactual \leq Qcommand	

Technical data (For applications outside these parameters, please consult us.)
general

Valve type			
Weight	kg	STW195	STW196
Installation position		Any, preferably horizontal	6.5
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	
Storage temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+80$	

hydraulic (measured using HLP 46; $\uplus_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ and $\mathrm{p}=100 \mathrm{bar}$)

${ }^{1)}$ Operating pressure, dependent on valve and sensor
2) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.
For the selection of the filters see www.boschrexroth.com/filter

Hydraulic fluid	Classification	Suitable sealing materials	Standards
Mineral oils and related hydrocarbons	HL, HLP	NBR, FKM	DIN 51524
Flame-resistant \quad _ containing water	HFC (Fuchs HYDROTHERM 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922

唯 Important information on hydraulic fluids!

- For more information and data on the use of other hydraulic fluids refer to data sheet 90220 or contact us!
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- The flash point of the process and operating medium used must be 40 K greater than the maximum solenoid surface temperature.
- Flame-resistant - containing water: Maximum pressure differential per control edge 175 bar. Pressure pre-loading at the tank port > 20% of the pressure differential; otherwise, increased cavitation.
Life cycle as compared to operation with mineral oil HL, HLP 50 \% to 100 \%

Technical data (For applications outside these parameters, please consult us.)

electric			
Supply voltage	Nominal voltage	VDC	24
	Lower limit value	Upper limit value	VDC
	19.4		
Maximum admissible residual ripple	VDC	35	
Current consumption	$I_{\text {max }}$	Vpp	2
	Pulse current	A	2
Command value signals	A	3	
Duty cycle ${ }^{1)}$	mA	4 to 20 or via CAN bus	
Maximum coil temperature ${ }^{2)}$	$\%$	100	
Protection class of the valve according to EN 60529	${ }^{\circ} \mathrm{C}$	Up to 150	

${ }^{1)}$ Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.
${ }^{2)}$ Due to the temperatures occurring at the surfaces of the solenoid coils, the European standards ISO 13732-1 and EN ISO 4413 need to be adhered to.

Sensor technology

Valve type		STW 195 (size 6) and STW 196 (size 10)		
Measurement range $\boldsymbol{p}_{\mathrm{N}}$	bar	50	160	250
Overload protection $\boldsymbol{p}_{\max }$	bar	120	320	500
Bursting pressure p	bar	550	800	1200
Zero point		< 0.15% of full scale		
End value		< 0.3 \%		
Temperature coefficient in nominal temperature range Greatest temperature coefficient of zero point		< 0.2 \% / 10 K		
Greatest temperature coefficient of the range		< 0.2 / / 10 K		
Characteristic curve deviation		< 0.2 \%		
Hysteresis		< 0.1 \%		
Repetition accuracy		< 0.05%		
Setting time (10-90\%)		$<2 \mathrm{~ms}$		
Long-term drift (1 year) at reference conditions		< 0.2 \%		
Conformity		CE according to EMC directive 89/336/EEC, 93/68/EEC, 93/44/EEC		

Electrical connections, allocation

Connector allocation X1, 11-pole + PE according to DIN EN 175201-804

Pin	No. and/or litz wire color ${ }^{1)}$	Interface A6 allocation	Interface F6 allocation
1	1	$24 \mathrm{VDC}(u(\mathrm{t})=19.4 \mathrm{~V} \ldots 35 \mathrm{~V}), \boldsymbol{I}_{\text {max }}=1.7 \mathrm{~A}$ (for output stage)	
2	2	$0 \mathrm{~V} \triangleq$ load zero, reference for pins 1 and 9	
3	White	Enable input $9 \ldots 35 \mathrm{~V} \triangleq$ enable on	
4	Yellow	$\pm 10 \mathrm{~V}$ command value $\boldsymbol{Q} \quad \boldsymbol{R}_{\mathrm{e}}>50 \mathrm{k} \Omega$	$4 \ldots 20 \mathrm{~mA}$ command value $Q \boldsymbol{R}_{\mathrm{e}}=100 \Omega$
5	Green	Reference for command values \boldsymbol{Q} and \boldsymbol{p}	
6	Purple	$\pm 10 \mathrm{~V}$ actual value \mathbf{Q}	$4 . . .20 \mathrm{~mA}$ actual value \boldsymbol{Q} (load resistance max. 300Ω)
7	Pink	$0 \ldots 10 \mathrm{~V}$ command value $\boldsymbol{p} \boldsymbol{R}_{\mathrm{e}}>50 \mathrm{k} \Omega$	$4 \ldots .20 \mathrm{~mA}$ command valuep $\boldsymbol{R}_{\mathrm{e}}=100 \Omega$
8	Red	$0 \ldots 10 \mathrm{~V}$ actual value p	$4 . . .20 \mathrm{~mA}$ actual value $\boldsymbol{p} \quad$ (load resistance max. 300Ω)
9	Brown	Control voltage, level same as pin $1, I_{\text {max }}=0.3 \mathrm{~A}$ (for signal part and bus)	
10	Black	0 V reference potential for pins $3,6,8$ and 11 (connected with pin 2 in valve)	
11	Blue	Error output 24 V ($19.4 \mathrm{~V} \ldots 35 \mathrm{~V}$), 200 mA max. load	
PE	Green-yellow	Connected to cooling element and valve housing	

Connect shield on PE only on the supply side!
${ }^{1)}$ Litz wire colors of connection line
for mating connector with cable set (see accessories)

Connector allocation X2, CAN bus, (coding A), M12 x 1, 5-pole, pins

Pin	Allocation
1	n.c.
2	n.c.
3	CAN_GND
4	CAN_H
5	CAN_L

Transmission rate kbit/s 20 to 1000
Bus address $\quad 1$ to 127

CAN-specific settings:
Baud rate and identifier must be set via the bus system.

Connector allocation for Profibus DP, "X2"/"X3" (coding B), M12 $\times 1,5$-pole, socket/pins

Pin	Allocation
1	+5 V
2	RxD/TxD-N (A line)
3	D GND
4	RxD/TxD-P (B line)
5	Shield

Transmission rate	up to 12 MBaud
Bus address	1 to 126
Setting via DIL switch	

The +5 V voltage of the IAC-P is available for an external terminating resistor.

Notice:
We recommend connecting the shields on both sides via the metal housings of the plug-in connectors.
 Using connector pins will affect the shielding effect! Internal screens are not required.

Electrical connections, allocation

Block diagram, integrated control electronics

Command value: Command value 12 to 20 mA at pin 4 and reference potential at pin 5 result in flow from $P \rightarrow A$. Command value 4 to 12 mA at pin 4 and reference potential at pin 5 result in flow from $A \rightarrow T$.
Actual value: Actual value 12 to 20 mA at pin 6 and reference potential at pin 10 result in flow from $P \rightarrow A$. Actual value 4 to 12 mA at pin 6 and reference potential at pin 10 result in flow from $\mathrm{A} \rightarrow \mathrm{T}$.
Connection line: Recommendation: - Up to 25 m line length for pins $1 ; 2$ and PE: $0.75 \mathrm{~mm}^{2}$, otherwise $0.25 \mathrm{~mm}^{2}$ - Up to 50 m line length for pins 1; 2 and PE: $1.00 \mathrm{~mm}^{2}$

External diameter see sketch of mating connector

Characteristic curves: Type STW 0195-2X/1...

Transition function of type STW 0195-2X/1..., A $\rightarrow \mathbf{T}$

Transition function of type STW 0195-2X/1..., P \rightarrow A

Transition function of type STW 0196-1X/1..., A $\rightarrow \mathrm{T}, \mathrm{B} \rightarrow \mathrm{T}$

Transition function of type STW 0196-1X/1..., P \rightarrow A

Frequency response of type STW 0195-2X/1...

Frequency response of type STW 0196-1X/1...

Performance limit $\mathbf{A} \rightarrow \mathrm{T}$, position-controlled

Flow characteristic curve $\mathrm{A} \rightarrow \mathrm{T}, \Delta p=5$ bar

Performance limit $\mathbf{P} \rightarrow \mathbf{A}$, position-controlled

Flow characteristic curve $\mathrm{P} \rightarrow \mathrm{A}, \Delta p=5$ bar

Performance limit $\mathbf{A} \rightarrow \mathbf{T}$, position-controlled

Flow characteristic curve A $\rightarrow \mathrm{T}, \Delta p=5$ bar

Performance limit $\mathbf{P} \rightarrow \mathbf{A}$, position-controlled

Flow characteristic curve $\mathrm{P} \rightarrow \mathrm{A}, \Delta p=5$ bar

Characteristic curves: Type STW 0196-1X/1...

Performance limit $A \rightarrow T$, position-controlled

Performance limit B \rightarrow T, position-controlled

Flow characteristic curve $\mathrm{P} \rightarrow \mathrm{A}, \Delta p=5$ bar

Performance limit $\mathbf{P} \rightarrow \mathbf{A}$, position-controlled

Flow characteristic curve $\mathrm{A} \rightarrow \mathrm{T}, \Delta p=5$ bar

Flow characteristic curve $\mathrm{B} \rightarrow \mathrm{T}, \boldsymbol{\Delta p}=5$ bar

1 Valve housing
2 Proportional solenoid "b" with inductive position transducer
3 Integrated digital control electronics
4 Name plate
5 Space required to remove the connector
6 Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05
Deviating from the standard:

- Ports P, A, B and T with $\varnothing 8 \mathrm{~mm}$
- Bore B may not be required since there is no pin in the valve.

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Type STW 0196-1X/1... (dimensions in mm)

Required surface quality of the valve contact surface

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

1 Valve housing
2 Proportional solenoid "b" with inductive position transducer
3 Integrated digital control electronics
4 Name plate
5 Machined valve contact surface,
porting pattern according to ISO 4401-05-04-0-05
Deviating from the standard:

- Port T1 exists additionally

Dimensions

Hexagon socket head cap screws		Material number
Type STW0195	4x ISO 4762 - M5 x $50-10.9-f I Z n-240 h-L$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=7 \mathrm{Nm} \pm 10 \%$ or 4x ISO 4762 - M5 x 50 Tightening torque $\boldsymbol{M}_{\mathrm{A}}=8.9 \mathrm{Nm} \pm 10 \%$	R913000064
Type STW0196	4x ISO 4762 - M6 x $40-10.9-f \mid Z n-240 h-L$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=12.5 \mathrm{Nm} \pm 10 \%$ or 4x ISO 4762 - M6 x $40-10.9$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=15.5 \mathrm{Nm} \pm 10 \%$	R913000058

Notice: The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure!

Subplates	Data sheet
Type STW0195	45052
Type STW0196	45054

Accessories (not included in the scope of delivery)

The following is required for the parame- terization with PC:	CANopen	Profibus DP	
$\mathbf{1}$	Interface converter (USB)	VT-ZKO-USB/CA-1-1X/V0/0 Mat.no. R901071963	VT-ZKO-USB/P-1-1X/V0/0 Mat.no. R901071962
$\mathbf{2}$	Commissioning software	WINPED	
$\mathbf{3}$	Connection cable, 3 m	D-Sub / M12, coding A Mat.no. $\mathbf{R 9 0 0 7 5 1 2 7 1}$	D-Sub / M12, coding B

Accessories, port X1 (not included in the scope of delivery)

Mating connector for X1

Mating connector according to
DIN EN17520-804 (11-pole + PE), plastic variant

- Mating connector without cable (assembly kit)
- Mating connector with cable set $2 \times 5 \mathrm{~m}$ 12-pole Material no. R900032356
- Mating connector with cable set $2 \times 20 \mathrm{~m}$ 12-pole Material no. R900860399

Accessories, CAN bus (A coding) (not included in scope of delivery)

Description	View, dimensions	Pole pattern, order details
X2 Round connector, can be assembled, 5-pole, M12×1 Straight mating connector in metal design.		Mat no.: R901076910 (line diameter 6-8 mm)

Accessories, Profibus (B coding) (not included in scope of delivery)

Description	View, dimensions	Pole pattern, order details
X2 Round connector, can be assembled, 5 -pole, M12x1 Straight line connector in metal design.		Mat no.: R901075545 (line diameter 6-8 mm)
X3 Round connector, can be assembled, 5-pole, M12x1 Straight mating connector in metal design.		Mat no.: R901075550 (line diameter 6-8 mm)
M12 protective cap (for mating connector only)		Mat no.: R901075563

Project planning/maintenance instructions/additional information

Product documentation for types STW0195 and STW0196

```
\_Technical data sheet 29014 (this data sheet)
Profibus protocol description, data sheet 29015-02-Z
```

General information regarding the maintenance and commissioning of hydraulic components data sheet 07800/07900

WINPED commissioning software and documentation on the Internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the factory and are supplied with default settings.
- Only complete devices can be repaired. Repaired devices are returned with default settings. User-specific settings are not accepted. The machine end-user will have to retransfer the corresponding user parameters.

Notes:

- Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.
- Do not use electrical signals led out of control electronics (e.g. "No error" signal) for switching safety-relevant machine functions (See also EN ISO 13849 "Safety of machinery - safety-related parts of control systems").
- If electro-magnetic interference must be expected, take appropriate measures to ensure the function (depending on the application, e.g. shielding, filtration)!
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Linear Motion and Assembly Technologies

Pneumatics
Service

Rexroth

Bosch Group

4/3-proportional directional valve direct operated, with $p Q$ functionality

RE 29050/03.13
1/26
Replaces: 12.12

Type 4WREQ

Size 6 and 10
Component series 2X
Maximum operating pressure 315 bar
Maximum flow $180 \mathrm{l} / \mathrm{min}$

Table of contents

Contents

Features

Ordering code
Symbols
Set-up, function, section
Technical data
Control electronics:
Marking and adjustment elements
Electrical connections and allocation
Settings for CANopen and PROFIBUS-DP
Block diagram
Characteristic curves
Device dimensions
Accessories
Project planning/maintenance instructions/ additional information

Features

- Direct operated proportional directional valve with integrated digital control electronics for the pressure, force and flow control (Integrated Axis Controller IAC-P)
- Completely adjusted unit consisting of valve, pressure sensor(s) (optional), digital control electronics and field bus connection
- Operation by means of proportional solenoids with central thread and detachable coil
- Valve spool position-controlled
- Integrated pressure sensor plate (optional)
- For subplate mounting: Porting pattern according to ISO 4401
- Analog interfaces for command and actual values
- Design for CAN bus with CANopen protocol DS 408 or PROFIBUS-DP V0/V1
- Quick commissioning via PC and commissioning software WIN-PED 6

Ordering code

Pressure rating with internal sensors

$100 \mathrm{bar}^{2}{ }^{2}$	$=\mathbf{4}$
$160 \mathrm{bar}^{2}$	$=\mathbf{5}$
$250 \mathrm{bar}^{2}$	$=\mathbf{8}$
$400 \mathrm{bar}^{3}$	
External sensor	$=\mathbf{B}$

5) With command value input "A6", only the sensor interfaces " 3 ", "4" or " 9 " are possible.
With command value input "F6", only the sensor interface " 2 " is possible.
${ }^{1)}$ See flow characteristic curves from page 12.
${ }^{2)}$ The selected pressure rating limits the maximum valve pressure.
${ }^{3)}$ Note: Maximum valve pressure is 315 bar.
${ }^{4)}$ If internal pressure sensors are used, no external pressure sensor can be connected.

Symbols

Type 4WREQ.Q5-...

Set-up, function, section (valve with integrated sensors)

Set-up

The valve basically consists of:

- Housing (1) and pressure sensor plate (12) with connection surface
- Control spool (2) with compression springs (3 and 4) and spring plate (8 and 9)
- Coils (5 and 6) and pole tubes (14 and 15) with central thread
- Position transducer (7)
- Integrated pressure sensors (10)
- Integrated digital control electronics IAC-P (11)

Functional description

- With de-energized solenoids (5 and 6), the control spool (2) is brought into the central position by compression springs (3 and 4) between the spring plates (8 and 9) (with V spool valve without spring plate). With V spool valves, the mechanical zero position does not correspond to the hydraulic one.
- Depending on the valve type, the following functions result (some of them can be combined):
- Flow control (\boldsymbol{Q})
- Flow control (\boldsymbol{Q})
- Pressure control in A and/or B (p)
- Force control (p)
- Substitutional control p / Q
- The command value can alternatively be specified via an analog interface (X1) or via the field bus interface (X2, X3).
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X2, X3).
- The controller parameters are set via the field bus
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons

The digital integrated control electronics enables the following fault detection:

- Cable break pressure sensor (10)
- Undervoltage
- Cable break position transducer (7)
- Communication errors
- Watchdog
- Cable break command value inputs (only with current interface)

The following additional functions are available:

- Ramp generator
- Internal command value profile
- Enable function analog/digital
- Error output 24 V

PC program WIN-PED 6

To implement the project planning task and to parameterize the IAC-P valves, the user may use the commissioning software WIN-PED 6.

- Parameterization
- Diagnosis
- Comfortable data administration on the PC

System requirements

- IBM PC or compatible system
- Windows 2000 or Windows XP
- RAM (recommendation 256 MB)
- 150 MB of available hard disk capacity

Notice

- The "WIN-PED 6" PC program is not included in the scope of delivery. It can be downloaded on the Internet free of charge! (see page 26)

Set-up, function, section (valve for external sensor)

Set-up

The valve basically consists of:

- Housing (1) with connection surface
- Control spool (2) with compression springs (3 and 4) and spring plate (8 and 9)
- Coils (5 and 6) and pole tubes (14 and 15) with central thread
- Position transducer (7)
- Integrated digital control electronics IAC-P (11)
- Port (X4) for an external pressure sensor (12)

Functional description

- With de-energized solenoids (5 and 6), the control spool (2) is brought into the central position by compression springs (3 and 4) between the spring plates (8 and 9) (with V spool valve without spring plate). With V spool valves, the mechanical zero position does not correspond to the hydraulic one.
- Functions:
- Flow control (\boldsymbol{Q})
- Pressure control (p)
- Substitutional control p / Q
- The command value can alternatively be specified via an analog interface (X1) or via the field bus interface (X2, X3).
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X2, X3).
- The controller parameters are set via the field bus
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons

The digital integrated control electronics enables the following fault detection:

- Cable break pressure sensor (depending on sensor interface)
- Undervoltage
- Cable break position transducer (7)
- Communication errors
- Watchdog
- Cable break command value inputs (only with current interface)

The following additional functions are available:

- Ramp generator
- Internal command value profile
- Enable function analog / digital
- Error output 24 V

PC program WIN-PED 6

To implement the project planning task and to parameterize the IAC-P valves, the user may use the commissioning software WIN-PED 6.

- Parameterization
- Diagnosis
- Comfortable data administration on the PC

System requirements

- IBM PC or compatible system
- Windows 2000 or Windows XP
- RAM (recommendation 256 MB)
- 150 MB of available hard disk capacity

Notice

- The "WIN-PED 6" PC program is not included in the scope of delivery. It can be downloaded on the Internet free of charge! (see page 24)

13-7
[居 Important notice!
The PG fitting (13) must not be opened. Mechanical adjustment of the adjustment nut located below is prohibited and damages the valve! age is inherent to the valves, which may increase over the life cycle.
The tank line must not be allowed to run empty. With corresponding installation conditions, a preload valve is to be installed.

Technical data (For applications outside these parameters, please consult us!)

${ }^{1)}$ Operating pressure, determined by valve and sensor
2) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.
For the selection of the filters see www.boschrexroth.com/filter

Hydraulic fluid	Classification	Suitable sealing materials	Standards
Mineral oils and related hydrocarbons	HL, HLP	NBR, FKM	DIN 51524
Flame-resistant _ containing water	HFC (Fuchs HYDROTHERM 46M, Petrofer Ultra Safe 620)	NBR	ISO 12922

[居 Important information on hydraulic fluids!

- For more information and data on the use of other hydraulic fluids refer to data sheet 90220 or contact us!
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- The flash point of the process and operating medium used must be 40 K higher than the maximum solenoid surface temperature.
- Flame-resistant - containing water: Maximum pressure differential per control edge 175 bar. Pressure pre-loading at the tank port > 20% of the pressure differential; otherwise, increased cavitation.
Life cycle as compared to operation with mineral oil HL, HLP 50 \% to 100 \%.

Technical data (For applications outside these parameters, please consult us!)
electric

Supply voltage	Nominal volta		VDC	24
	Lower limit va	e	VDC	19.4
	Upper limit va		VDC	35
	Maximum ad residual ripple	issible	Vss	2
Current consumption	$I_{\text {max }}$		A	2
	Impulse curre		A	3
Command and actual value signals	Voltage "A6"	$U_{\text {Q }}$	V	± 10
		U_{p}	V	0 to 10
	Current "F6"	I_{Q} and I_{p}	mA	4 to 20
Converter resolution (command/actual value signals)			Bit	10
Duty cycle ${ }^{1)}$			\%	100
Maximum coil temperature ${ }^{2)}$			${ }^{\circ} \mathrm{C}$	Up to 150
Protection class of the valve according to EN 60529:1991+A1:2000				IP 65 with

${ }^{1)}$ Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.
${ }^{2}$) Due to the temperatures occurring at the surfaces of the solenoid coils, the European standards ISO 13732-1 and EN ISO 4413 need to be adhered to.

Sensor technology

Measurement range $\boldsymbol{p}_{\text {N }}$	bar	100	160	250	400
Overload protection $\boldsymbol{p}_{\text {max }}$	bar	200	320	500	800
Bursting pressure p	bar	400	640	1000	1600
Compensation error		$<0.25 \%$ of the end value			
Zero point					
End value		< 0.5 \%			
Temperature coefficients in the nominal temperature range		< 0.2 \% / 10 K			
Largest TK of the zero point					
Largest TK of the range		< 0.2 \% / 10 K			
Characteristic curve deviation		< 0.2 \%			
Hysteresis		< 0.1 \%			
Repeatability		< 0.05%			
Long-term drift (1 year) with reference conditions		<0.2 \%			

With external pressure sensors, the accuracy of the pressure control depends on the accuracy class of the sensor used.

啹 Notice!

Information on the environment simulation testing for the areas EMC (Electromagnetic compatibility), climate and mechanical load see RE 29050-U (declaration on environmental compatibility).

Control electronics (IAC-P), marking and adjustment elements

Control electronics (IAC-P), Electrical connections and allocation

Connector pin assignment X1, 11-pin + PE according to DIN EN 175201-804

Pin	No. and/or litz wire color ${ }^{1)}$	Allocation interface A6	Allocation interface F6
1	1	$24 \mathrm{VDC}(u(\mathrm{t})=19.4 \mathrm{~V}$ to 35 V$), I_{\text {max }}=1.7 \mathrm{~A}$ (for output stage)	
2	2	$0 \mathrm{~V} \triangleq$ load zero, reference for pins 1 and 9	
3	White	Enable input 9 to 35 V enable on	
4	Yellow	$\pm 10 \mathrm{~V}$ command value $\boldsymbol{Q} \quad R_{\mathrm{e}}>50 \mathrm{k} \Omega$	4 to 20 mA command value $Q \quad R_{\mathrm{e}}=100 \Omega$
5	Green	Reference for command values \boldsymbol{Q} and \boldsymbol{p}	
6	Purple	$\pm 10 \mathrm{~V}$ actual value \mathbf{Q} (limit load 5 mA)	4 to 20 mA actual value \boldsymbol{Q} (load resistance max. 300Ω)
7	Pink	0 to 10 V command value $\boldsymbol{p} \quad R_{\mathrm{e}}>50 \mathrm{k} \Omega$	4 to 20 mA command value $\boldsymbol{p} \quad R_{\mathrm{e}}=100 \Omega$
8	Red	0 to 10 V actual value p (limit load 5 mA)	4 to 20 mA actual value \boldsymbol{p} (load resistance max. 300Ω)
9	Brown	Control voltage, level as pin $1, I_{\max }=0.3 \mathrm{~A}$ (for signal part and bus)	
10	Black	0 V reference potential for pins $3,6,8$ and 11 (in the valve connected to pin 2)	
11	Blue	Error output 24 V (19.4 V to 35 V), 200 mA max. load	
PE	Green-yellow	Connected to cooling element and valve housing	

Connect shield to PE only on the supply side!

1) Litz wire colors of the connection lines for mating connector with cable set (see accessories)

Control electronics (IAC-P), electrical connections and allocation

Connector pin assignment for CAN bus "X2"/"X3" (coding A), M12, 5-pin, pins/sockets

Pin	Allocation
1	n. c.
2	n. c.
3	CAN_GND
4	CAN_H
5	CAN_L

Transmission rate kbit/s
Bus address
20 to 1000
1 to 127
CAN-specific settings:
Baud rate and identifier can be set via the bus system and/or the DIL switches.

External pressure sensor port "X4" (coding A), M12, 5-pin, socket

Pin	Allocation of voltage interface	Allocation of current interface
1	Supply 24 VDC	Supply 24 VDC
2	Signal (0...5 V)	Signal (4...20 mA)
3	Zero 0 V (GND)	Zero 0 V (GND)
4	n. c.	n. c.
5	n. c.	n. c.

Notice:
We recommend connecting the shields on both sides over the metallic housings of the plug-in connectors.
Using connector pins will affect the shielding effect!
Internal screens are not required.

Control electronics (IAC-P), settings for CANopen and PROFIBUS-DP
CANopen

B7	B6	B5	B4	B3	B2	B1	B0	HEX	Baud rate: B7, B6	Address range: B5 to B0
0	0	0	0	0	0	0	0	$00{ }^{1)}$	Standard 20 kBaud or re-programmed	1 = standard or re-programmed
0 0	0 0	0 1	0 1		$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0 1	1 1	$\begin{gathered} 01 \\ \text { to } \\ 3 \mathrm{~F} \end{gathered}$	20 kBaud	1 to 63
0	1	0	0	0	0		0	40	125 kBaud	1 = standard or re-programmed
0 0	1 1	0 1	$\begin{aligned} & 0 \\ & 1 \end{aligned}$	0 1	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0 1	1 1	$\begin{aligned} & 41 \\ & \text { to } \\ & 7 \mathrm{~F} \end{aligned}$	125 kBaud	1 to 63
1	0	0					0	80	250 kBaud	1 = standard or re-programmed
	$\begin{aligned} & 0 \\ & 0 \end{aligned}$	0 1	0 1	0 1	$\begin{array}{r} 0 \\ \text { to } \\ 1 \end{array}$	0 1	1 1	$\begin{gathered} 81 \\ \text { to } \\ \mathrm{BF} \end{gathered}$	250 kBaud	1 to 63
1	1	0	0	0	0	0	0	C0	500 kBaud	$\begin{aligned} & 1 \text { = standard or } \\ & \text { re-programmed } \end{aligned}$
1 1	1 1	0 1	0 1	0	$\begin{gathered} 0 \\ \text { to } \\ 1 \end{gathered}$	0 1	1 0	$\begin{gathered} \mathrm{C} 1 \\ \text { to } \\ \mathrm{FE} \end{gathered}$	500 kBaud	1 to 62
1	1	1	1	1	1	1	1	FF	250 kBaud	Monitor modus/ programming mode 1 = fixed

PROFIBUS-DP

B7	B6	B5	B4	B3	B2	B1	B0	HEX	Address range
0	0	0	0	0	0	0	0	$00^{\text {1) }}$	125 = standard or re-programmed
0	0	0	0	0	0	0	1	01	1 to 126
0	1	1	1	1	1	1	0	$7 E$	with parameter channel
1	0	0	0	0	0	0	0	80	
1	1	1	1	1	1	1	0	FE	
1	1	1	1	1	1	1	1	FF	to 126
1	1	to	without parameter channel						

1) Factory setting

Connection of the bus terminator with the two lower switches (only with PROFIBUS-DP):
Left figure: Bus terminator not connected
Right figure: Bus terminator connected (both switches to "ON")

Control electronics (IAC-P), block diagram

Command value: Positive command value 0 to +10 V (or 12 to 20 mA) at pin 4 and reference potential at pin 5 result in flow from $P \rightarrow A$ and $B \rightarrow T$.
Negative command value 0 to -10 V (or 12 to 4 mA) at pin 4 and reference potential at pin 5 result in flow from $P \rightarrow B$ and $A \rightarrow T$.
Actual value: Positive actual value 0 to +10 V (or 12 to 20 mA) at pin 6 and reference potential at pin 10 result in flow from $P \rightarrow A$ and $B \rightarrow T$.
Negative actual value 0 to -10 V (or 12 to 4 mA) at pin 6 and reference potential at pin 10 result in flow from $P \rightarrow B$ and $A \rightarrow T$.
Connection line: Recommendation: - Up to 25 m line length for pins $1 ; 2$ and PE: $0.75 \mathrm{~mm}^{2}$, otherwise $0.25 \mathrm{~mm}^{2}$ - Up to 50 m line length for pins 1; 2 and PE: $1.00 \mathrm{~mm}^{2}$

External diameter see sketch of mating connector

[^27]Characteristic curves: Size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Pressure signal characteristic curve (Q 5 control spool), $p_{\mathrm{s}}=100$ bar

Pressure signal characteristic curve (V control spool), $p_{\mathrm{s}}=100$ bar

$\leftarrow \frac{\boldsymbol{U}_{\mathrm{E}}}{\boldsymbol{U}_{\mathrm{EN}}}$ in $\% \rightarrow$

Characteristic curves：Size 6 （measured with HLP46，$\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$ ）
Flow，size 6 with Q5 control spool
Tolerance range of the mechanical
zero position

Flow，size 6 with V control spool

[^28]Characteristic curves: Size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Flow/load function size 6 with Q5 control spool with maximum valve opening

Flow/load function size 6 with V control spool with maximum valve opening

Characteristic curves: Size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Frequency response size 6 with Q5 control spool, $p_{\mathrm{s}}=10$ bar

Frequency response size 6 with V control spool, $p_{\mathrm{s}}=10$ bar

Characteristic curves: Size 10 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Pressure signal characteristic curve (Q5 control spool), $p_{\mathrm{s}}=100 \mathrm{bar}$

Pressure signal characteristic curve (V control spool), $p_{\mathrm{s}}=100$ bar

$\leftarrow \frac{\boldsymbol{U}_{\mathrm{E}}}{\boldsymbol{U}_{\mathrm{EN}}}$ in $\% \rightarrow$

Characteristic curves: Size 10 (measured with HLP46, $\uplus_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Flow, size 10 with Q5 control spool
Tolerance range of the mechanical zero position

Flow, size 10 with V control spool

Characteristic curves: Size 10 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Flow/load function size 10 with Q5 control spool with maximum valve opening

Flow/load function size 10 with V control spool with maximum valve opening

Characteristic curves: Size 10 (measured with HLP46, $\uplus_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Transition function size 10

Signal change in \%

Frequency response size 10 with Q5 control spool, $p_{\mathrm{s}}=10$ bar

Frequency response size 10 with V control spool, $p_{\mathrm{s}}=10 \mathrm{bar}$

Dimensions: Size 6 (dimensions in mm)
Type 4WREQ with integrated pressure sensors

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $9.81 \times 1.5 \times 1.78$ (ports P, A, B, T)
5 Space required to remove the mating connector
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804; separate order, see page 25
8 Name plate
9 Integrated pressure transducer
10 Processed valve contact surface, porting pattern according to ISO 4401-03-02-0-05
Deviating from the standard:

- Ports P, A, B, T Ø 8 mm
- Bore G can be omitted as the valve does not have a pin.

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 6 (dimensions in mm)
Type 4WREQ for external pressure sensor

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $9.81 \times 1.5 \times 1.78$ (ports $\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{T}$)
5 Space required to remove the mating connector
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804; separate order, see page 25
8 Name plate
9 Processed valve contact surface,
porting pattern according to ISO 4401-03-02-0-05
Deviating from the standard:

- Ports P, A, B, T Ø 8 mm
- Bore G can be omitted as the valve does not have a pin.

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 10 (dimensions in mm)
Type 4WREQ with integrated pressure sensors

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $13.0 \times 1.6 \times 2.0$ (ports P, A, B, T1, T2)
5 Space required to remove the mating connector
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804; separate order, see page 25
8 Name plate
9 Integrated pressure transducer
10 Processed valve contact surface, porting pattern according to ISO 4401-05-04-0-05

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions: Size 10 (dimensions in mm)
Type 4WREQ for external pressure sensor

Required surface quality of the valve contact surface

1 Valve housing
2 Proportional solenoid "a" with inductive position transducer
3 Proportional solenoid "b"
4 R-ring $13.0 \times 1.6 \times 2.0$ (ports A, B, P, T, T1)
5 Space required to remove the mating connector
6 Integrated digital control electronics
7 Mating connector according to DIN EN 175201-804; separate order, see page 25
8 Name plate
9 Processed valve contact surface, porting pattern according to ISO 4401-05-04-0-05

Notice!

The dimensions are nominal dimensions which are subject to tolerances.

Dimensions

Hexagon socket head cap screws	Material number	
Size 6 with integrated pressure sensors	$4 \times$ ISO $4762-\mathrm{M} 5 \times 90-10.9-\mathrm{flZn}-240 \mathrm{~h}-\mathrm{L}$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=7 \mathrm{Nm} \pm 10 \%$	R913000222
Size 6 with external pressure sensor	$4 \times$ ISO $4762-\mathrm{M} 5 \times 50-10.9-\mathrm{fIZn}-240 \mathrm{~h}-\mathrm{L}$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=7 \mathrm{Nm} \pm 10 \%$ or $4 \times$ ISO $4762-\mathrm{M} 5 \times 50-10.9$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=8.9 \mathrm{Nm} \pm 10 \%$	R913000064
Size 10 with integrated pressure sensors	$4 \times$ ISO $4762-\mathrm{M} 6 \times 80-10.9-\mathrm{flZn}-240 \mathrm{~h}-\mathrm{L}$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=12.5 \mathrm{Nm} \pm 10 \%$ or $4 \times$ ISO $4762-\mathrm{M} 6 \times 80-10.9$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=15.5 \mathrm{Nm} \pm 10 \%$	R913000512
Size 10 with external pressure sensor	$4 \times$ ISO $4762-\mathrm{M} \times 40-10.9-\mathrm{flZn}-240 \mathrm{~h}-\mathrm{L}$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=12.5 \mathrm{Nm} \pm 10 \%$ or $4 \times$ ISO $4762-\mathrm{M} 6 \times 40-10.9$ Tightening torque $\boldsymbol{M}_{\mathrm{A}}=15.5 \mathrm{Nm} \pm 10 \%$	R913000058

Notice: The tightening torque of the hexagon socket head cap screws refers to the maximum operating pressure!

Subplates	Data sheet
Size 6	45052
Size 10	45054

Accessories (not included in the scope of delivery)

The following is required for the parameterization with PC:	CANopen	PROFIBUS-DP
1 Interface converter (USB)	VT-ZKO-USB/CA-1-1X/V0/0 Mat.no. R901071963	VT-ZKO-USB/P-1-1X/V0/0 Mat.no. R901071962
2 Commissioning software	WIN-PED 6 Download from www.boschrexroth.de\IAC	
3 Connection cable, 3 m	D-Sub / M12, coding A Mat.no. R900751271	D-Sub / M12, coding B Mat.no. R901078053

Accessories, port X1 (not included in the scope of delivery)

Mating connector for X1

Mating connector according to DIN EN 175201-804 (11-pin + PE), plastic variant

Accessories, sensor connection (not included in the scope of delivery)

| Description | View, dimensions | Pole pattern, order details |
| :--- | :--- | :--- | :--- | :--- |
| X4 (analog
 sensor) | | |
| Plug-in connec-
 tor, 5-pin, M 12,
 pin, A coding,
 straight line con-
 nector in met-
 al design | | |

Accessories, CAN bus (A coding) (not included in the scope of delivery)

Description
X2 Round plug-in connector, can be assembled, 5-pin, M 12 Straight mating connector in met- al design.
X3 Round plug-in connector, can b-pissembled, 12 Straight line con- nector in met- al design.
M12 cap Dust protection only for line connector.

Accessories, PROFIBUS (B coding) (not included in the scope of delivery)
Description

X2
Round plug-in
be assembled,
5-pin, M 12

Straight line con-
nector in met-
al design.

X3
Round plug-in
connector, can
5-pin, M12
Straight mating
connector in met-
al design.

M12 protective
cap (only for mat-
ing connector)

Project planning/maintenance instructions/additional information

Product documentation for IAC-P

Product information data sheet 29015-P
Technical data sheet (this data sheet)

Operating manual 29015-B

CAN bus protocol description data sheet 29015-01-Z
PROFIBUS protocol description data sheet 29015-02-Z

Commissioning software WIN-PED 6 and documentation on the Internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the factory and are supplied with default settings.
- Only complete devices can be repaired. Repaired devices are returned with default settings. User-specific settings are not accepted. The machine end-user will have to retransfer the corresponding user parameters.

Notices:

- Connect the valve to the supply voltage only when this is required for the functional sequence of the machine.
- Do not use electrical signals led out via control electronics (e.g. "No error" signal) for switching safety-relevant machine functions (In this connection also refer to EN ISO 13849 "Safety of machinery - Safety-related parts of control systems").
- If electro-magnetic interference must be expected, take appropriate measures to ensure the function (depending on the application, e.g. shielding, filtering)!
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

High-response valve with integrated digital axis controller (IAC-Multi-Ethernet)

Type 4WRPDH

RE 29391
Edition: 2013-03

Features

- Direct operated servo quality high-response valves
- Integrated digital axis control functionality (IAC-MultiEthernet)
- Best-in-class hydraulic controller
- Bus connection/service interface
(sercos, EtherCAT, EtherNet/IP, PROFINET RT)
- Actual value detection:
$2 \times$ configurable analog sensors (current/voltage)
$1 \times$ linear position measurement system
(SSI, EnDat 2.2 or 1Vss)
- Internal safety function
(can be used up to category 4/PL e according to EN 13849-1)
- CE conformity according to EMC Directive 2004/108/EC
- Sizes 6 and 10
- Component series 2 X
- Maximum operating pressure 315 bar
- Maximum flow 100 I/min

C ϵ

Contents

Features 1
Ordering code 2, 3
Symbols 4
Function, section 5, 6
Technical data 7, 8
Representation of the axis controller in the system network 9
Block diagram/controller function block 10
Electrical connections, assignment 11, 12
Characteristic curves 13 ... 16
Dimensions 17, 18
Accessories 19 ... 21
Project planning instructions/maintenance instructions/additional information22

Ordering code

01	02	03	04	05	06	07	08	09	10		11		12	13	14	15	16
4	WRP	D	H			B			2X	/		/	24		D6		

01	4 main ports	$\mathbf{4}$
02	High-response valve	WRP
03	With integrated digital axis controller	D
04	Control spool/bushing	H
05	Size 6	$\mathbf{6}$
	Size 10	$\mathbf{1 0}$

Control spool symbols (possible designs, characteristic curves see page 4)

07	Installation side of the inductive position transducer

Rated flow of size 6 with 70 bar valve pressure differential ($35 \mathrm{bar} /$ control edge)

		Characteristic curve L	Characteristic curve P		
08	$21 / \mathrm{min}$	-			02
	$41 / \mathrm{min}$	-	-		04
	$12 \mathrm{I} / \mathrm{min}$	-			12
	$15 \mathrm{I} / \mathrm{min}$		-		15
	$241 / \mathrm{min}$	-			24
	$25 \mathrm{I} / \mathrm{min}$		-		25
	$40 \mathrm{I} / \mathrm{min}$	-	\bullet		40

Rated flow of size 10 with 70 bar valve pressure differential ($35 \mathrm{bar} /$ control edge)

08	$50 \mathrm{I} / \mathrm{min}$	$\mathbf{5 0}$
	$100 \mathrm{I} / \mathrm{min}$	$\mathbf{1 0 0}$

Flow characteristics

09	Linear	\mathbf{L}
	Inflected characteristic curve (inflection 60\% for size 6 with rated flows "15" and "25", otherwise inflection 40 \%)	\mathbf{P}

Ordering code

| 10 | Component series $20 \ldots 29$ (20 ... 29: Unchanged installation and connection dimensions) | 2X |
| :--- | :--- | :--- | :--- |

Seal material

11	NBR seals	\mathbf{M}
	FKM seals	\mathbf{V}
12	Supply voltage 24 V	$\mathbf{2 4}$

Field bus interface

13	EtherNET/IP	\mathbf{E}
	PROFINET RT	\mathbf{N}
	Sercos	\mathbf{S}
	EtherCAT (CANopen profile)	\mathbf{T}

Electrical interface

| 14 | ± 10 VDC or $4 \ldots 20 \mathrm{~mA}$ | D6 |
| :--- | :--- | :--- | :--- |

Sensor interfaces

15	$0 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA} /$ EnDat 2.2	\mathbf{S}
	$0 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA} / \mathrm{SSI}$	\mathbf{T}
	$0 \ldots 10 \mathrm{~V} / 4 \ldots 20 \mathrm{~mA} / 1 \mathrm{Vss}$	\mathbf{U}

16	Further details in the plain text

相 Notice! For ordering codes and technical information regarding high-response valves with integrated digital axis controller and additional bus profiles, please refer to:

- Data sheet 29191: CANopen, Profibus DP V0/V1
- Data sheet 29291: Profibus DP/V2 (PROFIdrive profile)
[退 Important notice! Control spool versions that have been approved for the safety function:
- C
- C1
- C3
- C 4
- C5

Symbols

Size 6

	Linear	P: Inflection 60 \% $\left[\boldsymbol{q}_{\mathrm{n}}=15.25 \mathrm{I} / \mathrm{min}\right.$]	P: Inflection 40 \% $\left[\boldsymbol{q}_{\mathrm{n}}=40 \mathrm{l} / \mathrm{min}\right]$
	 C	 C3	 C4, C1
	Standard = 1:1, from $\boldsymbol{q}_{\mathrm{n}}=40 \mathrm{l} / / \mathrm{min}$ also $2: 1$		

Size 10

Function, section

Design

The high-response valve with IAC-Multi-Ethernet electronics mainly consists of:

- Direct operated high-response valve (1) with control spool and bushing in servo quality
- Integrated digital axis controller (2) with:
- Analog/digital interface (XH2)
- Ethernet interfaces (X7E1, X7E2)
- Analog sensor interfaces (X2M1, X2M2)
- Digital sensor interface (X8M)

High-response valve with integrated axis controller, analog interfaces (X2M1, X2M2), digital interfaces (XH2, X8M) and Ethernet interfaces (X7E1, X7E2)

Function, section

Functional description

The IAC-Multi-Ethernet valve (Integrated Axis Controller based on high-response valves) is a digital high-response valve with integrated axis controller and the following functionalities:

- Position control
- Pressure control
- Force control
- Override control (position/pressure)

This enables, amongst others, the following operating modes:

- Valve direct control
- Drive-controlled position control
- Drive-controlled positioning
- Positioning block operation
- The command values are specified via the Ethernet interface (X7E1 or X7E2) or, alternatively, via the analog/ digital interface (XH2)
- The feedback information of the actual value signals to the superior control system is provided optionally either via the Ethernet interface (X7E1 or X7E2) or the analog/ digital interface (XH2)
- The control parameters are set via the Ethernet interface (X7E1 or X7E2)

Safety function

The integrated control electronics of the valve enables the additional switch-off of a channel according to EN 13849-1 in the direction "P" to "A" (depending on the application, the fail-safe position must be adhered to).
For this purpose, a suitable control system must be provided to perform the plausibility check between the direction-dependent valve signals "enable input" and "enable acknowledgement" (signal fed back by the valve). It is not possible to switch off direction "P" to " B " in a safety-relevant manner according to EN 13849-1 (depending on valve type).

Monitoring

The digital control electronics enables comprehensive monitoring functions/fault detection including:

- Undervoltage
- Communication error
- Cable break for analog sensor inputs and digital position measurement system
- Short-circuit monitoring for analog/digital outputs
- Monitoring of the microcontroller (watchdog)
- Temperature of the integrated electronics

IndraWorks PC program

To implement the project planning task and to parameterize the IAC-Multi-Ethernet valves, the user may use the IndraWorks engineering tool (see accessories).

- Project planning
- Parameterization
- Commissioning
- Diagnosis
- Comfortable management of all data on a PC
- PC operating systems: Windows XP (SP3), Windows 7

Technical data

(for applications outside these parameters, please consult us!)

general	Size 6	Size $\mathbf{1 0}$
Design	Spool valve, direct operated, with steel sleeve,	
Operation	Proportional solenoid with position control, OBE	
Type of connection	Plate connection, porting pattern according to ISO 4401	
Installation position	Any	
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$
Storage temperature range	${ }^{\circ} \mathrm{C}$	$-10 \ldots+50$
Sine test according to DIN EN 60068-2-6	$10 \ldots 2000 \mathrm{~Hz} / \mathrm{maximum} \mathrm{of} 10 \mathrm{~g} / 10 \mathrm{cycles} / 3 \mathrm{axis}$	
Random test according to DIN EN 60068-2-64	$20 \ldots 2000 \mathrm{~Hz} / 10 \mathrm{gRMs} / 30 \mathrm{~g} \mathrm{peak} / 30 \mathrm{~min} / 3 \mathrm{axis}$	
Transport shock according to DIN EN 60068-2-27	$15 \mathrm{~g} / 11 \mathrm{~ms} / 3 \mathrm{axis}$	
Weight	kg	
Maximum relative humidity (non-condensing)	9.2	7.2

hydraulic								
Hydraulic fluid			See table page 8					
Viscosity range	- recommended	$\mathrm{mm}^{2} / \mathrm{s}$	$20 \ldots 100$					
	- maximum admissible	$\mathrm{mm}^{2} / \mathrm{s}$	$10 \ldots 800$					
Hydraulic fluid temperature range ${ }^{\circ} \mathrm{C}$			$-20 \ldots+60$					
Maximum admissible degree of contamination of the hydraulic fluid Cleanliness class according to ISO 4406 (c)			Class 18/16/13 ${ }^{1)}$					
Direction of flow			According to symbol					
hydraulic, size 6								
Rated flow at $\boldsymbol{\Delta p}=35$ bar per edge ${ }^{2)}$		$1 /$ min	2	4	12	15	24/25	40
Maximum operating pressure	- Ports A, B, P	bar	315					
	- Port T	bar	250					
Limitation of use with regard to the transition to failsafe	- Spool symbols C3, C5	bar	315	315	315	315	315	160
	- Spool symbols C1, C4	bar	315	315	315	280	250	100
Zero flow at 100 bar	- Linear characteristic curve L	$\mathrm{cm}^{3} / \mathrm{min}$	< 150	< 180	< 300	-	< 500	< 900
	- Inflected characteristic curve P	$\mathrm{cm}^{3} / \mathrm{min}$	-	-	-	< 180	< 300	< 450

hydraulic, size 10					
rated flow at $\Delta \boldsymbol{p}=35$ bar per edge ${ }^{2)}$	1/min	50		100	100
Maximum operating pressure - Ports $\mathrm{A}, \mathrm{B}, \mathrm{P}$	bar	315			
- Port T	bar	250			
Limitation of use with - Spool symbols C3, C5	bar	315	315	160	160
regard to the transition - Spool symbols C1, C4 to failsafe	bar	250	250	100	100
Zero flow at 100 bar - Linear characteristic curve L	$\mathrm{cm}^{3} / \mathrm{min}$	< 1200	< 1200	< 1500	< 1500
- Inflected characteristic curve P	$\mathrm{cm}^{3} / \mathrm{min}$	< 600	< 500	< 600	< 600

1) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.
For the selection of the filters, see www.boschrexroth.com/filter.
2) Flow with different Δp :
$\boldsymbol{q}_{\mathrm{x}}=\boldsymbol{q}_{\text {rated }} \cdot \sqrt{\frac{\Delta \boldsymbol{p}_{\mathrm{x}}}{35}}$

Technical data

(for applications outside these parameters, please consult us!)

static/dynamic			
Hysteresis	\%	≤ 0.2	
Manufacturing tolerance $\boldsymbol{q}_{\text {max }}$	\%	< 10	
Actuating time for signal step $0 . . .100 \%$	ms	≤ 10	25
Temperature drift		Zero shift < 1% with $\Delta \vartheta=40^{\circ} \mathrm{C}$	
Zero compensation		Ex factory ± 1 \%	

Hydraulic fluid		Classification	Suitable sealing materials	Standards
Mineral oils and related hydrocarbons		HL, HLP, HLPD, HVLP, HVLPD	NBR, FKM	DIN 51524
Bio-degradable	- insoluble in water	HETG	NBR, FKM	VDMA 24568
		HEES	FKM	
	- soluble in water	HEPG	FKM	VDMA 24568
Flame-resistant	- water-free	HFDU, HFDR	FKM	ISO 12922
	- containing water	HFC	NBR	ISO 12922

屄 Important information on hydraulic fluids!

- For more information and data on the use of other hydraulic fluids, refer to data sheet 90220 or contact us!
- There may be limitations regarding the technical valve data (temperature, pressure range, life cycle, maintenance intervals, etc.)!
- The flash point of the hydraulic fluid used must be 40 K higher than the maximum solenoid surface temperature.
- Flame-resistant - containing water: Maximum pressure differential per control edge 50 bar. Pressure pre-loading at the tank port > 20% of the pressure differential; otherwise, increased cavitation. The pressure peaks should not exceed the maximum operating pressures!
- If HFDU is used, data sheet 90222 must be complied with!

electrical, integrated electronics (OBE)

Relative duty cycle \%		100 (continuous operation)
Protection class according to EN 60529		IP 65 with mounted and locked plug-in connectors
Supply voltage ${ }^{1)}$	- Nominal voltage VDC	24
	- Lower limit value VDC	18
	- Upper limit value VDC	36
	- Maximum admissible residual ripple Vpp	2.5 (Comply with absolute supply voltage limit values!)
Power consumption	-Size 6 W	Maximum of 40
	- Size 10 W	Maximum of 60
AD/DA resolution	- Analog inputs	12 bit
	- Analog output	10 bit
Protective earthing conductor and screening		See pin assignment (CE-compliant installation)
Required fuse protection, external A		4, time-lag
Adjustment		Calibrated at plant, see valve characteristic curve
Conformity		CE according to EMC Directive 2004/108/EC tested according to EN 61000-6-2 and EN 61000-6-3

[^29] X8M (no internal voltage limitation)

Representation of the axis controller in the system network

Position, force, override control

Block diagram/controller function block

Key:
Optional connection $-\boldsymbol{\rightarrow}$

Detailed description of the safety function:

After the signal at the enable input has been removed, the output stage, and thus the solenoid of the valve, are internally separated from the available supply voltage. The enable acknowlegement will only be activated after the safe valve control spool position has been achieved.

For a more detailed description of the safety function, please refer to the 29391-B operating instructions as well.

Electrical connections, assignment

Connector pin assignment XH2, 11-pole + PE according to EN 175201-804

Pin	Core marking ${ }^{1)}$	Interface D6 assignment
1	1	24 V DC supply voltage
2	2	GND
3	3	Enable input, output stage 24 V DC
4	4	Command value $1(4 \ldots 20 \mathrm{~mA} / \pm 10 \mathrm{~V})^{2)}$
5	5	Reference for command values
6	6	Actual value $\left.(4 \ldots 20 \mathrm{~mA} / \pm 10 \mathrm{~V})^{2,3}\right)^{2}$
7	7	Command value $2(4 \ldots 20 \mathrm{~mA} / \pm 10 \mathrm{~V})^{2)}$
8	8	Enable acknowledgement, output stage 24 V DC
9	9	Not assigned
10	10	Switching output 24 V (error signal or power switching signal) max 1.5 A
11	11	Protective earthing conductor (connected directly to metal housing)
PE	green-yellow	

1) Core marking of the connection lines for mating connector with cable set (see accessories)
2) Selection via commissioning software
3) For diagnostic purposes, precise actual value response via Ethernet interface

Connector pin assignment for Ethernet interface "X7E1" and "X7E2" (coding D), M12, 4-pole, socket

Pin	Assignment
1	TxD +
2	RxD +
3	TxD -
4	RxD -
5	Not assigned

Analog configurable sensor interfaces, connections "X2M1", "X2M2" (coding A), M12, 5-pole, socket

Pin	Assignment
1	+24 V voltage output (sensor supply) ${ }^{1)}$
2	Sensor signal input current $(4 \ldots 20 \mathrm{~mA})^{2)}$
3	GND
4	Sensor signal input voltage $(0 \ldots 10 \mathrm{~V})^{2)}$
5	Negative differential amplifier input to pin 4 (optional)

[^30]
Electrical connections, assignment

Digital sensor interface SSI, EnDat 2.2 or 1 Vpp measurement system "X8M", M12, 8-pole, socket

Pin	SSI pin assignment ${ }^{1)}$	EnDat 2.2 pin assignment ${ }^{\text {1)2 })}$	1Vpp pin assignment
1	GND	GND	GND
2	+24 V	+5 V	+5 V
3	Data +	Data +	$\mathrm{A}+$
4	Data -	Data -	$\mathrm{A}-$
5	GND	GND	$\mathrm{B}+$
6	Clock -	Clock -	$\mathrm{B}-$
7	Clock +	Clock +	$\mathrm{R}+$
8	+24 V	+5 V	$\mathrm{R}-$

1) Pins 2, 8 and 1,5 each with same assignment
2) Supported resolution $\geq 10 \mathrm{~nm}$

Notice!

- Maximum load capacity at pin 2 (encoder supply): $50 \mathrm{~mA}(\mathrm{SSI}), 250 \mathrm{~mA}$ (EnDat 2.2, 1 Vpp)
- We recommend connecting the screens on both sides over the metallic housings of the plug-in connectors.
Using connector pins will affect the shielding effect! Internal screens are not required.

LED displays

LED	Interface	Sercos	EtherNET/IP	EtherCAT	PROFINET	+
1	X7E1	Activity	Activity	Not used	Activity	+
2		Link	Link	Link/activity	Link	10
3	Electronics module	S	Network status	Network status	Network status	
4		Module status	Module status	Module status	Module status	
5	X7E2	Activity	Activity	Not used	Activity	$\sqrt{ }$
6		Link	Link	Link/activity	Link	>60
Displays of the Status LEDs						
Mod	status LED LED 4)	Display status	Network status LED (LED 3)		Display status	$\left(\left(\left(\begin{array}{llll} \left.\left(\begin{array}{llll} 0 & 0 & 0 & 0 \end{array}\right)\right) \\ 0 & 0 & 0 \end{array}\right)\right)\right.$
	Off	No voltage supply		Off	No voltage supply	
Gree	red, flashing	Self-test		Green	Operation	
	n, flashing	Standby				

Green	Operation
Red, flashing	Warning
Red	Error

[㞓 Notice!

- LEDs 1, 2, 5 and 6 refer to interfaces "X7E1" and "X7E2"
- Link: Cable plugged in, connection established (permanently lit)
- Activity: Data sent/received (flashing)
- Module status LEDs 3 and 4 refer to the electronics module
- For a detailed description of the diagnosis LEDs, please refer to the functional description Rexroth HydraulicDrive HDS-xx.

Characteristic curves size 6

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$)

Pressure amplification

Bode diagram

Characteristic curves size 6

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$)

Flow/signal function

L: Linear

P: Inflection 60 \%

P: Inflection 40 \%

Characteristic curves size 10

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$)

Pressure amplification

Bode diagram

Characteristic curves size 10

(measured with HLP46, $\vartheta_{\text {oil }}=40 \pm 5^{\circ} \mathrm{C}$)

Flow/signal function

L: Linear 1:1

P: Inflection 40 \% 1:1

L: Linear 2:1

P: Inflection 40 \% 2:1

Bosch Rexroth AG, RE 29391, edition: 2013-03

Dimensions, size 6 (dimensions in mm)

1 Valve housing
2 Control solenoid with position transducer
3 Identical seal rings, 9.25×1.78, for ports $\mathrm{A}, \mathrm{B}, \mathrm{P}, \mathrm{T}$
4 Integrated digital control electronics
5 Name plate
6 Machined valve contact surface, porting pattern according to ISO 4401-03-02-0-05

Space required for removing the mating connectors

Notice!

The dimensions are nominal dimensions and subject to tolerances.

[^31]Dimensions, size 10 (dimensions in mm)

Accessories for parameterization (not included in scope of delivery)

For parameterization via PC, the following is required:	
$\mathbf{1}$ Commissioning software	IndraWorks Indraworks D Indraworks DS, download from www.boschrexroth.com/IAC
$\mathbf{2}$ Connection cable, 3 m	Shielded, M12 on RJ45, length can be freely chosen Mat. no. R911172135, type designation to be specified additionally RKB0044/xxx.x (length in meters)

Accessories, port XH2 (not included in the scope of delivery)

Accessories, sensor connections X2M1 and X2M2 (not included in the scope of delivery)

Cable set for X2M1, X2M2 (Analog sensors)	Design	Material number
Cable set for connecting Bosch Rexroth pressure sensors HM20, shielded, 5-pole, A coding, PUR/PVC, straight connector M12, on straight socket M12, line cross-section $0.34 \mathrm{~mm}^{2}$	Length 1.0 m	R901111712
	Length 2.0 m	R901111713

Accessories, sensor connection X8M (not included in the scope of delivery)

Cable set for X8M (SSI, 1Vss only) ${ }^{1)}$	Design	Material number
Shielded, 8-pole, A coding, straight connector M12, on free line end, line cross-section 0.25 $\mathrm{~mm}^{2}$	Length 10.0 m	R913002642

1) Recommendation: If an EnDat 2.2 sensor is used, please refer to the sensor manufacturer Heidenhain with respect to a cable set.

Accessories, Ethernet connections X7E1 and X7E2 (not included in the scope of delivery)

Cable set for X7E1, X7E2 (Ethernet interface)	Design	Material number
Cable set, shielded, 4-pole, D coding, straight connector M12, on straight connector M12, line cross-section 0.25 mm	Length xx.x m	R911172111 (type designation RKB0040/xx.x to be specified additionally)
Cable set, shielded, 4-pole, straight connec- tor M12, on straight connector RJ45, line cross-section $0.25 \mathrm{~mm}^{2}$	Length xx.x m	R911172135 (type designation RKB0044/xx.x to be specified additionally)

Miscellaneous accessories (not included in scope of delivery)

Protective cap	Design	Material number	
Protective cap M12	R901075563		
	nem		

Project planning/maintenance instructions/additional information

Product documentation for IAC-Multi-Ethernet

- Data sheet 29391 (this data sheet)
- Operating instructions 29391-B
- CE declaration of conformity (available from Bosch Rexroth upon request)
- Operation of IAC-Multi-Ethernet electronics (xx: Software version):
- Functional description Rexroth HydraulicDrive HDS-xx
- Parameter description Rexroth HydraulicDrive HDS-xx
- Diagnosis description Rexroth HydraulicDrive HDS-xx
- General information on the maintenance and commissioning of hydraulic components 07800/07900
- General operating instructions: Hydraulic valves for industrial applications 07600-B

Product family

- 4-way analog valve, direct operated, sizes 6 and 10, with integrated electronics (see data sheets 29035 and 29037)
- 4-way bus valve, direct operated, sizes 6 and 10, in CANopen or Profibus version (see data sheet 29191)

Commissioning software and documentation on the internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. Repaired devices are returned with default settings. User-specific settings will not be applied. The machine end-user will have to retransfer the corresponding user parameters.

Notes:

- The supply voltage must be permanently connected, as otherwise bus communication is not possible.
- If electromagnetic interference is to be anticipated, suitable measures must be taken to ensure the function (depending on the application, e.g. shielding, filtration)!

High-response valve with integrated digital axis controller (IAC-R) and field bus interface

Type 4WRPNH.../24C...
Type 4WRPNH.../24P...

[^32]RE 29191/09.10
1/22
Replaces: 06.05

Table of contents

Content

Page
Features
Ordering code
Standard types
Symbols
Function, section
Technical data
Block diagram/controller functionality
Electrical connections, assignment
Characteristic curves size 6
Characteristic curves size 10
Unit dimensions size 6
Unit dimensions size 10
17
Accessories
Project Planning / maintenance Instructions / additional Information

Features

- Direct operated high-response valves size 6 and size 10 with control spool and sleeve in servo quality
- Single-side operated, $4 / 4$ fail-safe position in deactivated state
- Integrated digital axis control functionality (IAC-R) for:
- Flow control
- Position control
- Pressure control
- p/Q function
- Substitutional position/pressure and position/ force control
- NC functionality (stand-alone operation possible)
- Analog and digital interfaces for command and actual values
$.4 \times$ analog sensors (+/-10 V or $4 . .20 \mathrm{~mA}$) or
$\cdot 1 \times$ length measurement system (1Vss or SSI) and 2 analog sensors
- Command value provision/actual value response analog (current or voltage) or via field bus
- Analog/digital inputs/outputs configurable
- Field bus connection
-CAN bus with CANopen protocol DS408
- Profibus-DP V0/V1
- Quick commissioning via PC and commissioning software

Ordering code

axis controller and

Control spools / sleeve $=\mathbf{H}$
Size $6=6$
Size 10

Spool symbols

4/4-directional design

	$=\mathrm{C} 3, \mathrm{C} 5$
	$=C 4, C 1$
XXXMH! X X X ${ }^{\text {X }}$	= C
With symbols $\mathbf{C} 5$ and C 1 :	
$\mathrm{P} \rightarrow \mathrm{A}: q_{\mathrm{v}} \quad \mathrm{B} \rightarrow \mathrm{T}: q_{\mathrm{v}} / 2$	
$\mathrm{P} \rightarrow \mathrm{B}: q_{v} / 2 \quad \mathrm{~A} \rightarrow \mathrm{~T}: q_{v}$	

Mounting side of the inductive position transducer

(standard)

$$
=B
$$

Rated flow at 70 bar valve pressure differential
(35 bar / control edge)

Size 6	
$2 \mathrm{I} / \mathrm{min}$	$=\mathbf{0 2}$
$4 \mathrm{I} / \mathrm{min}$	$=\mathbf{0 4}$
$12 \mathrm{I} / \mathrm{min}^{8)}$	$=\mathbf{1 2}$
$15 \mathrm{I} / \mathrm{min}^{1)}$	$=\mathbf{1 5}$
$24 \mathrm{I} \mathrm{min}^{8)}$	$=\mathbf{2 4}$
$25 \mathrm{I} / \mathrm{min}^{1)}$	$=\mathbf{2 5}$
$40 \mathrm{~m} \mathrm{~min}^{2)}$	$=\mathbf{4 0}$
Size 10	
$50 \mathrm{I} / \mathrm{min}$	$=50$
$100 \mathrm{I} / \mathrm{min}$	$=\mathbf{1 0 0}$

Flow characteristics

Linear	$=\mathbf{L}$
Inflected characteristic curve ${ }^{3)}$	$=$ P

${ }^{1)}$ Only in connection with flow characteristics "P"
2) $q_{v} 2: 1$ only with rated flow $=40 \mathrm{l} / \mathrm{min}$
3) Inflection 60% at size 6 with rated flow "15" and " 25 ", otherwise inflection 40 \%
4) For sensor interfaces "A", "B" or "C" only command value input "A6" is possible.
For sensor interface "G" and "H" only command value input " $F 6$ " is possible.
${ }^{5)}$ Gray code or binary
${ }^{6}$) Adjustable interpolation
7) Field bus interface CANopen with sensor interface "B", "C", "G" or "H" only upon request
${ }^{\text {8) }}$ Only in connection with flow characteristics "L"

Note:

Ordering codes for and technical information on the control valve with integrated digital axis controller (IAC-R) and clock-synchronized PROFIBUS DP/V2 (PROFIdrive profile) can be seen on data sheet 29291.

Standard types

Size 6 with CANopen

Material no.	Type
R901124262	4WRPNH 6 C4 B40P-2X/M/24CA6A
R901131590	4WRPNH 6 C4 B15P-2X/M/24CA6A
0811403540	4WRPNH 6 C3 B24L-2X/M/24CF6G
0811403548	4WRPNH 6 C4 B40L-2X/M/24CA6A
0811403541	4WRPNH 6 C3 B04L-2X/M/24CA6A

Size 6 with Profibus DP

Material no.	Type
0811403552	4WRPNH 6 C3 B04L-2X/M/24PA6A
0811403575	4WRPNH 6 C3 B40L-2X/M/24PA6B
0811403550	4 WRPNH 6 C3 B40L-2X/M/24PA6A
0811403573	4 WRPNH 6 C3 B25P-2X/M/24PA6B
0811403559	4WRPNH 6 C3 B04L-2X/M/24PF6G
0811403531	4 WRPNH 6 C3 B40L-2X/M/24PF6G
R901224758	4WRPNH 6 C1 B24L-2X/M/24PF6G

Size 10 with CANopen

Material no.	Type
R901125645	4WRPNH 10 C3 B100P-2X/M/24CA6A
0811403361	4WRPNH 10 C3 B100L-2X/M/24CA6A
R901243764	4WRPNH 10 C3 B100L-2X/M/24CA6B
R901243769	4WRPNH 10 C3 B100P-2X/M/24CA6B

Size 10 with Profibus DP

Material no.	Type
0811403358	4WRPNH 10 C3 B100L-2X/M/24PF6G
0811403359	4WRPNH 10 C4 B100L-2X/M/24PF6G
R901232766	4WRPNH 10 C4 B100P-2X/M/24PF6G

Symbols

Size 6

	Linear	$p:$ Inflection 60% $\left[q_{n} 15.25 \mathrm{l} / \mathrm{min}\right]$ $p:$ Inflection 40% $\left[q_{n} 40 \mathrm{l} / \mathrm{min}\right]$
	 C3, C5, C4, C1 C	
	Standard =1:1, from $q_{n}=40 \mathrm{l} / \mathrm{min}$ also 2:1	

Size 10

Function, section

Structure

The IAC-R valve mainly consists of:

- Direct operated high-response valve (1) with control spool in servo quality
- Integrated digital axis controller (2) with analog and digital sensor interfaces and field bus connection (X3)

High-response valve with integrated axis controller with analog interfaces ($\mathrm{X} 1, \mathrm{X} 4, \mathrm{X} 7$)

High-response valve with integrated axis controller with analog interfaces (X1, X4) and digital sensor interface (X7)

Function, section

Functional description

The IAC-R valve (Integrated Axis Controller on the basis of high-response valves) is a digital high-response valve with integrated axis controller with the following functionalities:

- Flow control
- Position control
- Pressure control
- p/Q function
- Substitutional position/pressure and position/ force control
- NC functionality
- The command value can alternatively be provided via an analog interface (X1) or via the field bus interface (X3)
- The actual value signals are provided via an analog interface (X1) and can additionally be read out via the field bus (X3).
- The controller parameters are set via the field bus.
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons

PC program WinHPT

To implement the project planning task and to parameterize the IAC-R valves, the user may use the commissioning software WinHPT (see accessories).

- Parameterization
- Programming of NC functionality
- Diagnosis
- Comfortable data management on a PC
- PC operating systems: Windows 2000 or Windows XP

The digital integrated control electronics enables the following fault detection:

- Cable break sensors
- Undervoltage
- Temperature of the integrated electronics
- Communication errors
- Watchdog

The following additional functions are available:

- Ramp generator
- Internal command value profile
- Release function analog/digital
- Error output 24 V (e.g. as switching signal to PLC/logic and further valves), max. 1.8 A
- Control output adjustment
- Deadband compensation
- Zero point correction
- Valve inflection compensation
- Friction compensation
- Direction-dependent gain

Technical Data (For applications outside these parameters, please consult us!)

general		Size 6	Size 10
Type		Gate valve, directly operated, with steel sleeve	
Actuation		Proportional solenoid with position control, OBE	
Type of connection		Plate connection, porting pattern according to ISO 4401	
Installation position		Any	
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	
Weight	kg	2.7	7.5

hydraulic (measured with HLP46, $\vartheta_{\text {OLL }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Hydraulic fluid			Hydraulic oil according to DIN 51524...535, other media upon request					
Viscosity range $\quad \frac{\mathrm{R}}{\mathrm{M}}$	Recommended	$\mathrm{mm}^{2} / \mathrm{s}$	$20 . .100$					
	Max admissible	$\mathrm{mm}^{2} / \mathrm{s}$	$10 \ldots 800$					
Hydraulic fluid temperature range		${ }^{\circ} \mathrm{C}$	$-20 \ldots+60$					
Maximum permitted degree of contamination of the hydraulic fluid cleanliness class according to ISO 4406 (c)			Class 18/16/13 ${ }^{\text {1) }}$					
Direction of flow			According to symbol					
hydraulic, size 6								
Rated flow at $\Delta p=35$ bar per edge ${ }^{2)}$		1/min	2	4	12	15	24/25	40
Max. operating pressure	Ports P, A, B	bar	315					
	Port T	bar	250					
Limitation of use with regard to the transition to failsafe	Spool symbols C3, C5	bar	315	315	315	315	315	160
	Spool symbols C1, C4	bar	315	315	315	280	250	100
Leakage oil at100 bar \quad Linear	aracteristic curve L	$\mathrm{cm}^{3} /$ min	< 150	< 180	< 300	-	< 500	< 900
	characteristic curve P	$\mathrm{cm}^{3} /$ min	-	-	-	< 180	< 300	< 450
hydraulic, size 10								
Rated flow at $\Delta \mathrm{p}=35$ bar per edge ${ }^{2)} \quad \mathrm{l} / \mathrm{min}$			$\begin{gathered} 50 \\ (1: 1) \\ \hline \end{gathered}$		$\begin{gathered} 50 \\ (2: 1) \\ \hline \end{gathered}$	$\begin{gathered} 100 \\ (1: 1) \end{gathered}$		$\begin{aligned} & 100 \\ & (2: 1) \\ & \hline \end{aligned}$
Max. operating pressure	Ports P, A, B	bar	315					
	Port T	bar	250					
Limitation of use with regard to the transition to failsafe	Spool symbols C3, C5		315		315	160		160
	Spool symbols C1, C4		250		250	100		100
Leakage oil at 100 bar	aracteristic curve L	$\mathrm{cm}^{3} / \mathrm{min}$	< 1200		< 1200	<1500		< 1500
	characteristic curve P	$\mathrm{cm}^{3} /$ min	< 600		< 500	< 600		<600
static / dynamic			Size 6			Size 10		
Hysteresis \%			≤ 0.2					
Manufacturing tolerance $q_{\max } \quad$ \%			<10					
Actuating time for signal step $0 \ldots 100 \% \mathrm{~ms}$			≤ 10			25		
Temperature drift			Zero shift < 1% at $\Delta \vartheta=40^{\circ} \mathrm{C}$					
Zero compensation			ex factory ± 1 \%					
Conformity			CE according to EMC directive 2004/108/EC					

The footnotes are explained on the following page.

Technical Data (For applications outside these parameters, please consult us!)

electric				
Relative duty cycle			\%	100 (continuous operation)
Protection class according to EN 60529				IP 65 with mounted and locked plug-in connectors
Supply voltage	Nomi	tage	VDC	24
	Lowe	value	VDC	21
	Upp	value	VDC	36
	Max admissible residual ripple		Vss	2 (at supply voltage of $23 \mathrm{~V} \ldots 34 \mathrm{~V}$)
Power consumption		Size 6	W	Max. 40
		Size 10	W	Max. 60
AD/DA resolution			Analog inputs Analog outputs	$\begin{aligned} & 12 \mathrm{bit} \\ & 10 \mathrm{bit} \end{aligned}$
Protective earthing conductor and shielding				See pin assignment (CE-compliant installation)
Adjustm				Calibrated ex factory, see valve characteristic curve

1) The cleanliness classes specified for the components must
be adhered to in hydraulic systems.
2) Flow at different Δp : $\quad q_{x}=q_{\text {nom }} \cdot \sqrt{\frac{\Delta p_{x}}{35}}$

Effective filtration prevents faults and at the same time increases the service life of the components.
For the selection of the filters see
www.boschrexroth.de/filter.

Block diagram/controller functionality

Electrical connections, assignment

Unit connector pin assignment X1, 11-pole + PE according to EN 175201-804

Pin	Core marking ${ }^{1}$	Assignment of interface A6	Assignment of interface F6
1	1	24 VDC (supply for output stage and power switching signal)	
2	2	$0 \mathrm{~V} \triangleq$ load zero (for output stage)	
3	3	Release input 8.5 ... $24 \mathrm{VDC}=$ function, $\mathrm{R}_{e} \sim 10 \mathrm{k} \Omega$	
4	4	Command value $\pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{e}} \sim 130 \mathrm{k} \Omega$ or dig. Input (from PLC) ${ }^{2)}$	$4 \ldots 20 \mathrm{~mA}$ command value; $\mathrm{R}_{\mathrm{e}}=200 \Omega$ or dig. Input (from PLC) ${ }^{2}$)
5	5	Reference for command values	
6	6	$\pm 10 \mathrm{~V}$ actual value or dig. Output (to PLC) ${ }^{2)}$	$4 \ldots 20 \mathrm{~mA}$ actual value, load resistance $\sim 330 \Omega$ or dig. Output (to PLC) ${ }^{2)}$
7	7	Command value $\pm 10 \mathrm{~V} ; \mathrm{R}_{\mathrm{e}} \sim 130 \mathrm{k} \Omega$ or dig. Input (from PLC) ${ }^{2)}$	$4 \ldots 20 \mathrm{~mA}$ command value; $\mathrm{R}_{\mathrm{e}}=200 \Omega$ or dig. Input (from PLC) ${ }^{2}$)
8	8	$\pm 10 \mathrm{~V}$ actual value or dig. Output (to PLC) ${ }^{2)}$	$4 \ldots 20 \mathrm{~mA}$ actual value, load resistance $\sim 330 \Omega$ or dig. Output (to PLC) ${ }^{2)}$
9	9	24 VDC (control voltage for signal part and bus)	
10	10	0 V reference potential for pin $3,6,8$ and 9	
11	11	Switching output 24 V (error signal or power switching signal) max 1.8 A	
PE	Green-yellow	Protective earthing conductor (connected directly to metal housing)	

${ }^{1)}$ Core marking of the connection lines for line socket with cable set (see accessories)
${ }^{2}$) Selection via commissioning software

Unit connector pin assignment for CAN bus "X3" (code A), M12, 5-pole, pins

Pin	Assignment
1	n.c.
2	n.c.
3	CAN_GND
4	CAN_H
5	CAN_L

External screen on both sides of the metallic housing of the plug-in connection.
Internal screens are not required.
Transmission rate kbit/s 20 to 1000
Bus address 1 to 127

Unit connector pin assignment for Profibus DP "X3" (code B), M12, 5-pole, socket

Pin	Assignment
1	VP
2	RxD/TxD-N (A line)
3	D GND
4	RxD/TxD-P (B line)
5	Shield

Transmission rate
up to 12 MBaud 1 to 126

The galvanically separated voltage +5 V (pin $1-\mathrm{VP}$) at the socket allows for passive termination of the profibus.

Electrical connections, assignment

Analog sensor interfaces, connection "X4" and "X7" (code A), M12, 5-pole, socket

Pin	Assignment of voltage interface	Assignment of current interface
1	Supply 24 VDC	Supply 24 VDC
2	Signal 3 (X4) / 4 (X7), (-10 $\ldots+10 \mathrm{~V})$	Signal 3 (X4) / 4 (X7), (4 ... 20 mA)
3	Zero 0 V	Zero 0 V ${ }^{1)}$
4	Signal 1 (X4) / 2 (X7), (-10 $\ldots+10 \mathrm{~V})$	Signal $1(\mathrm{X} 4) / 2(\mathrm{X} 7),(4 \ldots 20 \mathrm{~mA})$
5	Shield	Shield

${ }^{1)}$ Do not connect to 2-wire pressure transducer

Attention: The analog sensor interfaces at the connections X4 and X7 are not coded.
Danger of confusing the same! The user has to ensure proper wiring!

Digital sensor interface 1Vss or SSI measurement system "X7", M23, 12-pole, socket

Pin	Assignment 1Vss	Assignment SSI
1	$\overline{\mathrm{~B}}$	0 V
2	Sense $+5 \mathrm{~V}^{1)}$	Data
3	R	Clock
4	$\overline{\mathrm{R}}$	n.c.
5	A	n.c.
6	$\overline{\mathrm{~A}}$	n.c.
7	n.c.	n.c.
8	B	n.c.
9	n.c.	24 V
10	$0 \mathrm{~V}^{1)}$	$\overline{\text { Data }}$
11	${\text { Sense } 0 \mathrm{~V}^{1)}}^{12}$	$+5 \mathrm{~V}^{11}$

Note:

The sense signal is not analyzed.

${ }^{1)}$ Recommendation:

Connect the voltages +5 V (pin 12) and +5 V -Sense (pin 2), as well as 0 V (pin 10) and 0 V -Sense (pin 11) for transducer supply.

Note:

We recommend connecting the screens on both sides over the metallic housings of the plug-and-socket-connectors.
Using connector pins will affect the effectiveness of the screen!
Internal screens are not required.

Characteristic curves size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Pressure gain

Bode diagram

Characteristic curves size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)
Flow - signal function
L: Linear

P: Inflection 60 \%

P: Inflection 40 \%

	Leakage oil at	100 bar	$\mathrm{P} \rightarrow \mathrm{A}$	$50 \mathrm{~cm}^{3} / \mathrm{min}$
			$P \rightarrow B$	$70 \mathrm{~cm}^{3} / \mathrm{min}$
	Flow at	$\Delta p=35$ bar	$\mathrm{A} \rightarrow \mathrm{T}$	$10 \ldots 20 \mathrm{l} / \mathrm{min}$
			$B \rightarrow T$	7 ... $20 \mathrm{l} / \mathrm{min}$
	Leakage oil at	100 bar	$P \rightarrow A$	$50 \mathrm{~cm}^{3} / \mathrm{min}$
			$P \rightarrow B$	$70 \mathrm{~cm}^{3} / \mathrm{min}$
			$A \rightarrow T$	$70 \mathrm{~cm}^{3} / \mathrm{min}$
			$B \rightarrow T$	$50 \mathrm{~cm}^{3} / \mathrm{min}$
F. Fail-safe $p=0$ bar \quad ¢ 7 ms	Enable "off" or internal shut-off in case of error $U_{\mathrm{B}} \leq 18 \mathrm{~V}$ or $I \leq 2 \mathrm{~mA}$ (at $4 \ldots 20 \mathrm{~mA}$ signal)			
$p=100 \mathrm{bar}=>10 \mathrm{~ms}$				

Characteristic curves size 10 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Pressure gain

Bode diagram

$\underline{\text { Characteristic curves size } 10 \text { (measured with HLP46, } \vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C} \text {) }}$

Flow - signal function

Unit dimensions size 6 (dimensions in mm)

1 Valve housing
2 Control solenoid with position transducer
3 O-ring 9.25×1.78 (ports P, A, B, T)
4 Integrated digital control electronics
5 Name plate
6 Machined valve mounting face, porting pattern according to ISO 4401-03-02-0-05

Required surface quality of the valve mounting face

Valve mounting screws

(not included in scope of delivery)
4 units of hexagon socket head cap screws according to ISO4762-M5x30-10.9-N67F 82170
(galvanized according to Bosch standard N67F 821 70)
$M_{\text {A }}=6+2 \mathrm{Nm}$
Mat. no. 2910151166

Unit dimensions size 10 (dimensions in mm)

1 Valve housing
2 Control solenoid with position transducer
3 O-ring 12.0×2.0 (ports P, A, B, T, T1)
4 Integrated digital control electronics
5 Name plate
6 Machined valve mounting face, porting pattern according to ISO 4401-05-04-0-05
Deviating from the standard:

- Port T1 is provided additionally

Valve mounting screws

(not included in scope of delivery)
4 units of hexagon socket head cap screws according to ISO4762-M6x40-10.9-N67F 82170
(galvanized according to Bosch standard N67F 821 70)
$M_{\mathrm{A}}=11+3 \mathrm{Nm}$
Mat. no. 2910151209

Accessories for parameterization (not included in scope of delivery)

The following is required for the parameterization with PC:	CANopen	Profibus DP	
$\mathbf{1}$ Interface converter (USB)	VT-ZKO-USB/CA-1-1X/V0/0 Mat. no. R901071963	VT-ZKO-USB/P-1-1 X/V0/0 Mat. no. R901071962	
$\mathbf{2}$ Start-up software	WinHPT		
$\mathbf{3}$ Connecting cable, 3 m	D-Sub / M12 (coding A), Mat. no. R900751271 from www.boschrexroth.com/IAC		

Accessories, port X1 (not included in scope of delivery)

Mating connector for X1

Mating connector according to
EN 175201-804
(12-pole, metal design)

- Mating connector (construction set) for a cable diameter of 12-15 mm
- Mating connector with 5 m cable, $12 \times 0.75 \mathrm{~mm}^{2}$ with cable shield, assembled
- Mating connector with 20 m cable, $12 \times 0.75 \mathrm{~mm}^{2}$ with cable shield, assembled

Material no. R901268000

Material no. R901272854

Material no. R901272852

Accessories, sensor connections (not included in scope of delivery)

Description	View, dimensions	Pole image, order details
X4, X7 (analog sensors) Plug-in connector, 5-pole, M12 x 1, pins, A coding, metal design		Mat. no.: R901075542 (cable diameter 4 ... 6 mm)
X7 (digital sensors, 1 Vss and SSI) Plug-in connector, 12-pole, M23, pins, soldered joint, metal design with cap nut		Mat. no.: R901076284 (cable diameter up to 10.5 mm)

Accessories, CAN bus (A coding) (not included in scope of delivery)

Description	View, Dimensions	Pole image, order details
X3 Round plug-in connector, processible, 5 -pole, M12 $\times 1$ Straight mating connector from metal.		Mat. no.: R901076910 (cable diameter 6-8 mm)
M12 cap Dust protection		Mat. no.: R901075564

Accessories, profibus (B code) (not included in scope of delivery)

Description	View, Dimensions	Pole image, order details
X3 Round plug-in connector, processible, 5-pole, M12 $\times 1$ Straight line coupling plug from metal.		

Mat. no.: R901075545
(cable diameter 6-8 mm)
Further profibus participants can be connected e.g. with a Y cable (can be ordered at HARTING, Mat. no. TB61042030039).

| M12 protective cap | | |
| :--- | :--- | :--- | :--- |

Project Planning / Maintenance Instructions / Additional Information

Product documentation for IAC-R

Data sheet 29191 (this data sheet)

Declaration on environmental compatibility 29191-U

Operator's manual
CANopen 29090-B-01
Profibus 29090-B-02

General information on the maintenance and commissioning of hydraulic components 07800 / 07900

Commissioning software and documentation on the Internet: www.boschrexroth.com/IAC

Maintenance instructions:

- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. Repaired devices are returned with default settings.

User-specific settings are not maintained. The operator will have to retransfer the corresponding user parameters.

Notes:

- Connect the valve to the supply voltage only when this is required for the functional processes of the machine.
- Electric signals taken out via control electronics (e.g. signal "ready for operation") may not be used for the actuation of safety-relevant machine functions! (See also the European standard "Safety requirements for fluid power systems and their components - Hydraulics", EN 982.)
- If electromagnetic interference is to be anticipated, suitable measures must be taken to ensure the function (depending on the application, e.g. shielding, filtration)!

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth

Bosch Group

High-response valve with integrated digital axis controller (IAC-R) and clock-synchronized PROFIBUS DP/V2 (PROFIdrive profile)

Type 4WRPNH.../24F..

Size 6 and 10
Component series 2X
Maximum operating pressure 315 bar
Maximum flow $100 \mathrm{l} / \mathrm{min}(\Delta p=70 \mathrm{bar})$

RE 29291/06.13

Type 4WRPNH 6 .../24F..

Features

- Direct operated high-response valves size 6 and size 10 with servo performance type control spool and sleeve
- Single-side operated, 4/4 fail-safe position in deactivated state
- Integrated digital axis control functionality (IAC-R) for: - position control with underlying velocity control
- DSC functionality
- Analog sensor interfaces for
- current and voltage
- Digital sensor interfaces for
- $1 \times$ length measurement system 1 Vpp or
- $1 \times$ length measurement system SSI or
- $1 \times$ length measurement system EnDat 2.2
- Clock-synchronous command value provision according to PROFIdrive profile V4.0
- telegram 5 or 105
- PROFIBUS DP/V1, DP/V2
- Quick commissioning via PC and commissioning software WinHPT from version 2.1

Ordering code

(35 bar / control edge)

Size 6

$21 / \min ^{1)}$
$4 \mathrm{l} / \mathrm{min}$
$=02$
$121 /$ min 5)
$=04$
$15 \mathrm{I} / \mathrm{min}^{2)}$
$=12$
$241 / \min ^{5)}$
$=15$
$24 \mathrm{l} / \mathrm{min}^{5} \quad=24$
$25 \mathrm{I} / \mathrm{min}^{2)}=\mathbf{2 5}$

$40 \mathrm{I} / \mathrm{min}^{3)}$	$=\mathbf{4 0}$
Size 10	
$50 \mathrm{I} / \mathrm{min}$	$=50$
$100 \mathrm{I} / \mathrm{min}$	$=100$

Flow characteristics

Linear	$=\mathbf{L}$
Inflected characteristic curve ${ }^{4)}$	$=\mathbf{P}$

1) Rated flow $2 \mathrm{I} / \mathrm{min}$ not with flow characteristics "P"
2) Only in connection with flow characteristics "P"
${ }^{3)} q_{v} 2: 1$ only with rated flow $=40 \mathrm{l} / \mathrm{min}$
${ }^{4)}$ Inflection 60% at size 6 with rated flow " 15 " and " 25 ", otherwise inflection 40%
${ }^{5)}$ Only in connection with flow characteristics "L"

System overview

Symbols
Size 6

	Linear	p: Inflection 60 \% [$q_{\mathrm{n}} 15.25 \mathrm{I} / \mathrm{min}$]	p: Inflection 40 \% [$q_{n} 40 \mathrm{l} / \mathrm{min}$]
	 C	 C3,	4, C1
	Standard =1:1, from $q_{n}=40 \mathrm{l} / \mathrm{min}$ also 2:1		

Size 10

Function, section

Construction

The IAC-R valve mainly consists of:

- Direct operated high-response valve (1) with servo performance type control spool
- Integrated digital axis controller (2) with analog (X4/X7) or digital (X7) sensor interface
- PROFIBUS interface (X3) with functionality according to DP/V1 with clock synchronization according to DP/V2

Functional description

The IAC-R valve is a digital high-response valve with integrated axis controller with the following functionalities:

- Position control
- DSC functionality
- Analog (X4/X7) or digital (X7) sensor interface
- Clock-synchronous command value specification according to PROFIdrive profile V4.0
- telegram 5 or 105
- The controller parameters are set via the PROFIdrive parameter protocol.
- Separate supply voltage for bus/controller and power part (output stage) for safety reasons.

PC program WinHPT
To implement the project planning task and to parameterize the IAC-R valves, the user may use the commissioning software WinHPT (see accessories).

- Parameterization
- Diagnosis
- Comfortable data management on a PC
- PC operating systems: Windows 2000 or Windows XP

The digital integrated control electronics enables the following fault detection:

- Cable rupture of sensorics system
- Undervoltage
- Temperature of the integrated electronics
- Communication fault
- Watchdog
- Synchronous monitoring

The following additional functions are available:

- Fault output 24 V or control of an isolator valve
- Control output adjustment
- deadband compensation
- zero offset
- valve inflection compensation
- friction compensation
- direction-dependent gain
- PIDT1 controller
- State controller
- Automatic/semi-automatic drive measurement for simple controller optimization

High-response valve with integrated axis controller and analog (X4/X7) or digital (X7) sensor interface

Technical data (For applications outside these parameters, please consult us!)

General		Size 6	Size 10
Type		Spool valve, directly operated, with steel sleeve	
Actuation		Proportional solenoid with position control, OBE	
Type of connection		Subplate mounting, porting pattern according to ISO 4401	
Installation position		any	
Ambient temperature range	${ }^{\circ} \mathrm{C}$	$-20 \ldots+50$	
Weight	kg	2.7	7.5

hydraulic (measured with HLP46, $\cup_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Hydraulic fluid			Hydraulic oil according to DIN 51524...535, other media upon request
Viscosity range	recommended	$\mathrm{mm}^{2} / \mathrm{s}$	$20 . .100$
	max admissible	$\mathrm{mm}^{2} / \mathrm{s}$	$10 \ldots 800$
Hydraulic fluid temperature range ${ }^{\circ} \mathrm{C}$			$-20 \ldots+60$
Maximum admissible degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c)			Class 18/16/13 ${ }^{1)}$
Flow direction			according to symbol

Hydraulic, size 6

Rated flow at $\Delta p=35$ bar per edge ${ }^{2)}$		1/min	2	4	12	15	24/25	40
Max operating pressure	Ports P, A, B	bar	315					
	Port T	bar	250					
Limitations of use Δp pressure drop across valve	Spool symbols C, C3, C5	bar	315	315	315	315	315	160
$q_{\text {Vnom }}:>q_{\text {N valves }}$	Spool symbols C1, C4	bar	315	315	315	280	250	100
Leakage oil linear ch	aracteristic curve L	$\mathrm{cm}^{3} / \mathrm{min}$	< 150	<180	< 300	-	< 500	< 900
at 100 bar inflected characteristic curve P		$\mathrm{cm}^{3} / \mathrm{min}$	-	-	-	< 180	< 300	< 450
Hydraulic, size 10								
Rated flow at $\Delta p=35$ bar per edge ${ }^{2)}$		1/min	$\begin{gathered} \hline 50 \\ (1: 1) \\ \hline \end{gathered}$	$\begin{gathered} \hline 50 \\ (2: 1) \\ \hline \end{gathered}$		$\begin{gathered} 100 \\ (1: 1) \end{gathered}$		$\begin{gathered} \hline 100 \\ (2: 1) \\ \hline \end{gathered}$
Max. operating pressure	Ports P, A, B	bar	315					
	Port T	bar	250					
Limitations of use Δp pressure loss at valve	Spool symbols C, C3, C5	bar	315		315	160		160
$q_{\text {Vnom }}:>q_{\text {N valves }}$	Spool symbols C1, C4	bar	250		250	100		100
Leakage oilat 100 bar	aracteristic curve L	$\mathrm{cm}^{3} / \mathrm{min}$	< 1200		< 1200	< 1500		< 1500
	characteristic curve P	$\mathrm{cm}^{3} / \mathrm{min}$	< 600		< 500	< 600		< 600
Static / dynamic			Size 6			Size 10		
Hysteresis		\%	≤ 0.2					
Manufacturing tolerance		\%	< 10					
Acutating time for signal step $0 \ldots 100$ \%		ms	≤ 10			25		
Temperature drift			Zero point drift $<1 \%$ at $\Delta \vartheta=40^{\circ} \mathrm{C}$					
Zero point calibration			ex factory ± 1 \%					
Conformity			CE according to EMC directive 2004/108/EC					

The footnotes are explained on the following page.

Technical data (For applications outside these parameters, please consult us!)

Electrical				
Relative duty cycle \%				100 (continuous operation)
Protection class				IP 65 according to EN 60529 with mounted and locked line connectors
Supply voltage	Nominal voltage VDC			24
	Lower limit value VDC			21
	Upper limit value VDC			36
	Max. admissible residual ripple \quad Vpp			2 (at supply voltage of $23 \mathrm{~V} \ldots 34 \mathrm{~V}$)
Power consumption		Size 6	W	max. 40
		Size 10	W	max. 60
Protective earthing conductor and shielding				see pin assignment (CE-compliant installation)
Adjustment				Calibrated ex factory, see valve characteristic curve

1) The cleanliness classes stated for the components need to be maintained in hydraulic systems.
${ }^{2)}$ Flow at different Δp :
$q_{\mathrm{x}}=q_{\text {nom }} \cdot \sqrt{\frac{\Delta p_{\mathrm{x}}}{35}}$

Effective filtration prevents faults and at the same time increases the service life of the components.
For selecting the filters, see www.boschrexroth.de/filter

Block diagram of the controller functionality

Electrical connections, assignment

Unit connector assignment X1, 11-pin + PE according to DIN EN 175201-804

Pin	No. or Litz wire color ${ }^{1}$)	Assignment interface A6/F6
1	1	24 VDC (supply for output stage and power switching signal)
2	2	$0 \mathrm{~V} \xlongequal{\text { load zero (for output stage) }}$
3	white	reserved
4	yellow	reserved
5	green	reserved
6	purple	reserved
7	pink	reserved
8	red	reserved
9	brown	24 VDC (supply for signal part and bus)
10	black	0 V reference potential for pin 9 (supply for signal part and bus)
11	blue	Switching output 24 V (error signal or power switching signal) max 1.8 A
PE	green-yellow	Protective earthing conductor (connected directly to metal housing)

Connect shield on PE only on the supply side!
${ }^{1)}$ Litz wire colors of the connection lines for line socket (see accessories)

Unit connector assignment for PROFIBUS DP "X3" (code B), M12, 5-pin, socket / pins

Pin	Pinout of plug	Pinout of socket
1	n.c.	VP
2	RxD/TxD-N (A line)	RxD/TxD-N (A line)
3	DGND	DGND
4	RxD/TxD-P (B line)	RxD/TxD-P (B line)
$5^{1)}$	Shield	Shield

${ }^{1)}$ We recommend connecting the shield on both sides via the metallic housing of the plug-and-socket-connectors. Using pin 5 will have adverse effects on the effectiveness of the shield!

The unit socket and the unit plug are equivalent as PROFIBUS connections.
The electrically isolated voltage +5 V (pin $1-\mathrm{VP}$) at the socket allows for passive termination of the PROFIBUS.

Electrical connections, assignment

Analog sensor interfaces, connection "X4" and "X7" (code A), M12, 5-pin, socket

Pin	Pinout Voltage interface	Pinout Current interface
1	Supply 24 VDC	Supply 24 VDC
2	Signal 3 (X4) / 4 (X7), (-10 ... +10 V)	Signal 3 (X4) / 4 (X7), (4 ... 20 mA)
3	Zero 0 V	Zero 0V
4	Signal 1 (X4) / 2 (X7), (-10 $\ldots+10 \mathrm{~V})$	Signal 1 (X4) / $2(\mathrm{X} 7),(4 \ldots 20 \mathrm{~mA})$
5	Shield	Shield

Note:
The analog sensor interfaces at the connections X4 and X7 are not coded. Danger of confusing the same! The user has to ensure proper wiring!

Digital sensor interface 1Vpp or SSI measurement system "X7", M23, 12-pin, socket

Pin	Pinout 1Vpp	Pinout SSI
1	\bar{B}	0 V
2	sense $+5 \mathrm{~V}^{11}$	Data
3	R	Clock
4	$\overline{\mathrm{R}}$	n.c.
5	A	n.c.
6	$\overline{\mathrm{~A}}$	n.c.
7	n.c.	n.c.
8	B	n.c.
9	n.c.	24 V
10	$0 \mathrm{~V}^{11}$	$\overline{\text { Data }}$
11	Sense $0 \mathrm{~V}^{11}$	$\overline{\text { Clock }}$
12	$+5 \mathrm{~V}^{11}$	n.c.

Note:

The sense signal is not evaluated.
Digitale Sensorschnittstelle EnDat 2.2 Messsystem „X7", M12, 8-polig, Buchse

Pin	Belegung EnDat 2.2
1	$0 \mathrm{~V}^{2)}$
2	$+5 \mathrm{~V}^{2)}$
3	Data
4	Data
5	$0 \mathrm{~V}^{2)}$
6	Clock
7	Clock
8	supply $+5 \mathrm{~V}^{2)}$

Note:

We recommend connecting the shields on both sides via the metallic housings of the plug-and-socket-connectors. Using connector pins will affect the effectiveness of the screen! Internal shields are not required.
${ }^{11}$ Recommendation: Connect the voltages +5 V (pin 12) and +5 V -Sense (pin 2), as well as 0 V (pin 10) and 0 V-Sense (pin 11) for transducer supply.
${ }^{2}$) Recommendation: Connect the voltages +5 V (pin 2 and 8) as well as 0 V (pin 1 and 5) for transducer supply.

Characteristic curves size 6 (measured with HLP46, $\vartheta_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Pressure gain

Bode diagram

Amplitude

Characteristic curves size 6 (measured with HLP46, $\mho_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Flow - signal function

Note:

Ex factory the inflection-compensation is activated at the valve electronics. In order that the P -characteristic curve appears linear.

	Leakage oil at	100 bar	$\begin{aligned} & \mathrm{P} \rightarrow \mathrm{~A} \\ & \mathrm{P} \rightarrow \mathrm{~B} \end{aligned}$	$\begin{aligned} & 50 \mathrm{~cm}^{3} / \mathrm{min} \\ & 70 \mathrm{~cm}^{3} / \mathrm{min} \end{aligned}$
	Flow at	$\Delta p=35$ bar	$A \rightarrow T$	$10 \ldots 20 \mathrm{l} / \mathrm{min}$
			$B \rightarrow T$	7 ... $20 \mathrm{l} / \mathrm{min}$
	Leakage oil at	100 bar	$\mathrm{P} \rightarrow \mathrm{A}$	$50 \mathrm{~cm}^{3} / \mathrm{min}$
			$P \rightarrow B$	$70 \mathrm{~cm}^{3} / \mathrm{min}$
			$\mathrm{A} \rightarrow \mathrm{T}$	$70 \mathrm{~cm}^{3} / \mathrm{min}$
			$B \rightarrow T$	$50 \mathrm{~cm}^{3} / \mathrm{min}$
Fail-safe $p=0$ bar $=>7 \mathrm{~ms}$	Shut-down U_{B} (output stage) $\mathrm{X} 1 /$ pin $1+2$			

Characteristic curves size 10 (measured with HLP46, $\uplus_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Pressure gain

$\Delta p_{\mathrm{B} \rightarrow \mathrm{A}}\left[\% p_{\mathrm{P}}\right]$

Bode diagram

Amplitude

Characteristic curves size 10 (measured with HLP46, $\cup_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}$)

Flow - signal function

L: Linear 1:1
L: Linear 2:1

P: Inflection 40\% 1:1

P: Inflection 40\% 2:1

Note:

Ex factory the inflection-compensation is activated at the valve electronics. In order that the P -characteristic curve appears linear.

	Leakage oil at	100 bar	$\begin{aligned} & P \rightarrow A \\ & P \rightarrow B \end{aligned}$	$\begin{aligned} & 50 \mathrm{~cm}^{3} / \mathrm{min} \\ & 70 \mathrm{~cm}^{3} / \mathrm{min} \end{aligned}$	
	Flow at	$\Delta p=35$ bar	$\mathrm{A} \rightarrow \mathrm{T}$	10 ... $20 \mathrm{l} / \mathrm{min}$	
		$q_{\mathrm{n}}=50 / 100 \mathrm{l} / \mathrm{min}$	$B \rightarrow T$	$7 \ldots 20 \mathrm{l} / \mathrm{min}$	
	Leakage oil at	100 bar	$P \rightarrow A$	$50 \mathrm{~cm}^{3} / \mathrm{min}$	
			$P \rightarrow B$	$70 \mathrm{~cm}^{3} / \mathrm{min}$	
			$\mathrm{A} \rightarrow \mathrm{T}$	$70 \mathrm{~cm}^{3} / \mathrm{min}$	
			$B \rightarrow T$	$50 \mathrm{~cm}^{3} / \mathrm{min}$	
Fail-safe $p=0$ bar $=>12 \mathrm{~ms}$	Shut-down U_{B} (output stage) $\mathrm{X} 1 /$ pin $1+2$				
$p=100 \mathrm{bar}=>16 \mathrm{~ms}$					

Unit dimensions size 6 (dimensions in mm)

1 Valve housing
2 Control solenoid with position transducer
3 Identical seal rings for ports $\mathrm{P}, \mathrm{A}, \mathrm{B}, \mathrm{T}$
4 Integrated digital control electronics
5 Nameplate
6 Machined valve contact surface, position of the ports according to ISO 4401-03-02-0-05

Valve mounting screws

(not included in scope of delivery):
4 units of hexagon socket head cap screws according to ISO4762-M5x30-10.9-N67F 82170
(galvanized according to Bosch standard N67F 821 70) $M_{T}=6+2 \mathrm{Nm}$
material no. 2910151166

Unit dimensions size 10 (dimensions in mm)

1 Valve housing
2 Control solenoid with position transducer
3 Identical seal rings for ports $P, A, B, T, T 1$
4 Integrated digital control electronics
5 Nameplate
6 Machined valve contact surface, position of the ports according to ISO 4401-05-04-0-05
Deviating from the standard:

- port T1 exists additionally

Valve mounting screws
(not included in scope of delivery):
4 units of hexagon socket head cap screws according to ISO4762-M6x40-10.9-N67F 82170
(galvanized according to Bosch standard N67F 821 70)
$M_{\mathrm{T}}=11+3 \mathrm{Nm}$
material no. 2910151209

Accessories for parameterization (not included in scope of delivery)

For parameterization using the PC, the following is required:	PROFIBUS DP (code B)
1 Interface converter (USB-PROFIBUS DP)	VT-ZKO-USB/P-1-1X/V0/0 Mat.no. R901071962
2 Start-up software	WinHPT (from version 2.1) Download at www.boschrexroth.com/IAC
3 Connecting cable, 3 m	D-Sub/M12, Mat.no. R901078053
424 V supply voltage	Mating connector for X1 (see below)

Accessories, port X1 (not included in the scope of delivery)

Mating connector for X1

Mating connector according to EN 175201-804 (12-pole, metal design)

- Mating connector (construction set) for a cable diameter of 12-15 mm, Material no. R901268000
- Mating connector with 5 m cable, $12 \times 0.75 \mathrm{~mm}^{2}$ with cable shield, assembled, Material no. R901272854
- Mating connector with 20 m cable, $12 \times 0.75 \mathrm{~mm}^{2}$ with cable shield, assembled, Material no. R901272852

Accessories, sensor connections (not included in scope of delivery)
Description

X4, X7 (analog sensors)
Plug-in connector, 5-pole, M12 x , pins, A coding, metal design
X7 (digital sensors, 1 Vpp and SSI) Plug-in connector, 12-pole, M23, pins, sol- dered joint, metal design with cap nut

Accessories, PROFIBUS (B code) (not included in scope of delivery)

Description	Detail, dimensions	Pin pattern, order details
X3 Round connector, to be wired by user, 5 -pin, M12 $\times 1$ Straight line connector in metal design		Material no.: R901075545 (cable diameter 6-8 mm)
X3 Round connector, to be wired by user, 5 -pin, M12 $\times 1$ Straight mating connector from metal		Material no.: R901075550 (cable diameter 6-8 mm)
PROFIBUS terminating resistor Round plug-in connector, 5-pin, M12 $\times 1$		

Project planning / maintenance instructions / additional information

Product documentation for IAC-R with clock-synchronized PROFIBUS DP/V2 (PROFIdrive profile)

Commissioning software and documentation on the internet: www.boschrexroth.com/IAC

Mainenance notes:

- The devices have been tested in the factory and are supplied with default settings.
- Only complete units can be repaired. The repaired units will be supplied with default settings and current firmware. User-specific settings are not maintained. The operator will have to retransfer the corresponding user parameters.

Notes:

- Connect the valve to the supply voltage only when this is required for the functional processes of the machine.
- Electric signals brought out via control electronics (e.g. signal "ready for operation") may not be used for the actuation of safety-relevant machine functions! (see also the European standard "Safety requirements for fluid power systems and their components - Hydraulics", EN 982.)
- If electromagnetic interference must be expected, take appropriate measures to safeguard the function (depending on the application, e.g. shielding, filtering)!
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Digital closed-loop control electronics

C

RE 30543/12.10
1/16
Replaces: 01.10

Component series 2X

Table of contents
Content Page
Features 2
Ordering code 3
Software project planning 4
Overview of the controller functions 5
Functional description 6 and 7
Block diagram 9
System overview, interfaces 10
Technical data 11 and 12
Pinout 13
Unit dimensions 14
Project Planning / Maintenance Instructions /
Additional information 15

Features

- Use as closed-loop control electronics for closed control loops with PIDT1 controller and optional state feedback
- Substitutional closed-loop control (e.g. position control with superimposed pressure/force control) possible
- Use as command value electronics for generating, linking and standardizing signals
- Input for digital position measurement systems ($2 \times$ SSI or 1 x incremental)
-6 analog inputs, voltage ($\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$) and current ($4 \ldots . .20 \mathrm{~mA}$) selectable via software, input resistance of $\mathrm{Al} 1>10 \mathrm{M} \Omega$
-3 analog outputs, 1 x selectable voltage ($\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$) or current ($0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$), $2 x$ voltage ($\pm 10 \mathrm{~V}$)
- Numerous possibilities of signal linking and switch-over
- Release input and OK output
- 8 digital inputs
- 7 digital outputs, configurable
- Parameterizable ramp function
- 32 blocks with command values, velocities and controller parameters
- Adjustment to hydraulic drive by means of area adjustment, characteristic curve correction, overlap compensation, residual velocity logic and zero point correction
- +10 V reference voltage output
- Serial interface RS232
- Up to 32 electronics can be interconnected for parameterization and diagnosis via the local bus

Fields of application

- Machine tools
- Plastics processing machines
- Special machines
- Presses
- Transfer systems

Technology functions

- Sequence parameterization
- Positioning
- Pressure control
- Force control
- Tables

Hydraulic axes

- Measurement system:
- Incremental or absolute (SSI, Gray, Binary)
- Analog 0 to $\pm 10 \mathrm{~V}$ and $0(4)$ to 20 mA
- Actuating variable output voltage or current
- Freely configurable controller variants
- Position/pressure/force/velocity controller
- Substitutional closed-loop control (position/pressure)

Programming

- User programming using a PC

Operation

- Comfortable administration of the machine and measuring data on a PC

Process connection

- Digital inputs and outputs,
- Analog inputs and outputs,
- PROFIBUS DP to communicate with a superior control
- EtherNet/IP
- PROFINET RT

Installation

- Top hat rail 35 mm

CE conformity

- EMC directive 2004/108/EC

Applied harmonized standards:
EN 61000-6-2:2005
EN 61000-6-3:2007

More information
 www.boschrexroth.com/hacd

Ordering code

Included within the scope of delivery:
Mating connector for

- Port X1S (Phoenix Mini Combicon 3-pole)
- Port X2A1 (Weidmüller B2L 3.5/18 LH SN SW)
- Port X2M1 (Weidmüller B2L 3.5/30 LH SN SW

Recommended accessories (can be ordered separately)
3

Description	Material number
Interface cable RS232, length 3 m	R900776897
USB-RS232 converter	R901066684
Plug-in connector type 6ES7972-0BA41-OXA0 for PROFIBUS DP	R900050152
CD with BODAC software SYS-HACD-BODAC-01/	R900777335

Software project planning

Project planning

The creation of a parameter file forms the basis for the function of the HACD. The parameter file contains the block structure of the HACD in which the links of the variables will be created. The parameter files are created in BODAC. The parameter file can be created offline and transferred to the HACD by means of a PC.
This software project planning is implemented according to the following steps:

1. Selection of the HACD.
2. Application is defined by means of the block structure.
3. Setting of the parameter values (sensors, controllers...).
4. The data is sent to the HACD.
5. Storage of the data in the flash.
6. The setting and the machine sequence are optimized at the machine.

PC program BODAC

For the implementation of the project planning tasks, the BODAC PC program is available to the user. It serves the programming, setting, and diagnosis of the HACD.

Scope of services:

- Comfortable dialog functions for setting the machine data online or offline
- Dialog window for setting the parameter values online
- Comprehensive options for displaying process variables, digital inputs, outputs, and flags
- Recording and graphical presentation of up to eight process variables with great selection of trigger options

PC-System requirements:

- Windows XP, Windows Vista, Windows 7
- Random access memory (256 MB recommended)
- 250 MB free hard disk capacity

Note:

The BODAC PC program is not included in the scope of delivery. It can be downloaded in the Internet free of charge! Download in the Internet: www.boschrexroth.com/hacd Inquiries: support.hacd@boschrexroth.de

Overview of the controller functions

Position controller:

- PDT1 controller
- Linear amplification characteristic curve
- Direction-dependent gain adaptation
- Gain modification via the program possible
- Adaptation of the valve characteristic curve
- Fine positioning
- Residual voltage principle
- Compensation of zero point errors
- State feedback via
- Pressure
- Pressure differential
- Position
- Command value provision

Pressure/force controller:

- PIDT1 controller
- I component switchable via window
- Pressure differential analysis
- Command value provision

Velocity controller:

- PI controller
- I component switchable via window

Monitoring functions:

- Dynamic tracking error monitoring
- Cable break monitoring for incremental and SSI encoder
- Cable break monitoring for sensors
- Cable break monitoring for analog signals

Functional description

The VT-HACD-3-2X closed-loop control electronics is a module that is installed on a top hat rail.
A microcontroller controls the entire process, makes adjustments, establishes links and realizes the closed control loops. Data for configuration, command values and parameters are stored in a FLASH in a non-volatile form.
The entire configuration and the parameterization and diagnosis are carried out via the BODAC PC program. Apart from the switches for the address setting, the module does not contain any other hardware switches. For the configuration, the HACD has to be connected to a PC via a serial interface (RS 232, 1:1 cable).
The configuration and thus the creation of applications are very simple - you just have to link pre-defined functional components. For this purpose, no programming knowledge is necessary.
One mode is available:

- Structural editor

Own motion sequences can be created. For this purpose, 32 blocks are available. Each block contains: Command value, ramp times (velocity \pm, acceleration \pm) and controller parameters.
Blocks are activated by setting trigger conditions: Setting digital inputs, comparing signals with freely definable thresholds or expiry of waiting periods.

Signal links [6] [8] [17]
The HACD offers numerous possibilities for linking signals on the input and on the output side, whereas it is in each case possible to link 2 signals. This includes functions like addition, subtraction, multiplication, division as well as minimum/maximum value generator, area ratio and limiter:
$+=$ Addition: $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$

- = Subtraction: $Z=X-Y$
* $=$ Multiplication: $\mathrm{Z}=\mathrm{X}$ * $\mathrm{Y} / 100$
/ = Division: $Z=X / Y * 100$
$\mathrm{MIN}=\quad$ Minimum value generator: $\mathrm{Z}=\mathrm{MIN}(\mathrm{X}, \mathrm{Y})$
$M A X=$ Maximum value generator: $Z=\operatorname{MAX}(X, Y)$
RATIO $=$ Entry of a ratio:
for RATIO $>1: Z=X$ * RATIO $-Y$
for RATIO <1: $Z=X-Y /$ RATIO
(e.g. area ratio with pressure differential measurement)

LIMIT $=$ Signal limiter: $\mathrm{Z}=\mathrm{MIN}(|X|,|Y|){ }^{*}$ sign (X)
JUMP = Jump generator: $Z=$ MAX $(|X|,|Y|){ }^{*} \operatorname{sign}(X)$
with $\quad Z \ldots$ Result
X... 1st signal

X ... 2nd signal
T1 Lag = Low-pass filter

Analog I/O [1] [15]

For the 6 analog inputs, you can switch between $\pm 10 \mathrm{~V}$, $0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ by means of the software.
For the analog output AO1, you can switch between $\pm 10 \mathrm{~V}$, $0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ by means of the software.
AO 2 and AO 3 are fixedly set to $\pm 10 \mathrm{~V}$.
The switching is performed by utilizing the whole range of the analog-digital converter.
For all analog inputs, working range and error detection can be defined.
The analog outputs can be adjusted by means of amplification and offset.

Digital I/O [3] [16]

The HACD has 9 digital inputs and 8 digital outputs.
An input has the fix functionality Release, a digital output the fixed functionality OK.
The other digital inputs are used for triggering blocks (see blocks and triggering).
The function of each digital output can be determined by means of selection from a pre-defined list:

- Command value = Actual value
- Actual value larger or smaller than an adjustable threshold
- Waiting period expired
- Ramp active
- Internal flag set
- Error flag set
- Table ended
- Error status
- Block timeout
- Controller active
- Absolute value (actual value) < window
- Absolute value (command value) < window
- Incremental home position

Functional description (continued)

Digital position measurement system

When using the VT-HACD-3-2X as closed-loop control electronics, digital position measurement systems of type SSI or incremental can be used for recording the actual value.

Limitations of use incremental encoder

The maximum frequency of the incremental encoder input $\left(\mathrm{f}_{\mathrm{G}}\right)$ of the HACD is 250 kHz . The maximum travel velocity of the drive, the resolution (res) of the encoder system used and the possible signal analysis by an EXE (interpolation and digitalization electronics) determine the frequency.

Determination formulae

Encoder resolution with given maximum velocity:
$\operatorname{Res}[\mu \mathrm{m}] \geq \frac{\mathrm{v}\left[\frac{\mathrm{m}}{\mathrm{s}}\right] \times 10^{3}}{\mathrm{f}_{\mathrm{G}}[\mathrm{kHz}] \times E X E}$
Velocity with given encoder resolution:
$\mathrm{v}\left[\frac{\mathrm{m}}{\mathrm{s}}\right] \leq \frac{\operatorname{Res}[\mu \mathrm{m}] \times E X E \times \mathrm{f}_{\mathrm{G}}[\mathrm{kHz}]}{10^{3}}$

Controller

If the HACD is used as closed-loop control electronics, the "Controller" entry has to be selected in the signal linking [8].
The LCx signals constitute the command value branch, the LFBx signals the actual value branch. [8]
As actual value signal, you can use both, an SSI encoder or incremental encoder [2] digital measurement system or one or several analog sensors.
The controller structure is designed as PIDT1 controller, whereas each component can be activated or deactivated individually. In this way, you can, e.g. also realize a P or PT1 controller. The I component can moreover be controlled via a window (upper and lower limit).
Controller parameters can be set in a block-wise or in a blockindependent form.
A state feedback can be used for dampening the controller output.

Controller structure:

Adjustment to hydraulic system

For the optimum adjustment to the particularities of hydraulic drives, the following functions are implemented upstream the analog output:

- Direction-dependent gain [10]

For positive and negative values, the amplification can be set separately. In this way, adjustment to the area ratio of a single-rod cylinder is possible.

- Characteristic curve correction [11]

In this way, the progressive flow characteristic of proportional directional valves is compensated or an inflected characteristic curve is realized.

- Overlap jump/residual velocity [12]

When using valves with positive overlap, a fine positioning can be used in case of a PDT1 controller in order to increase the static accuracy. This fine positioning can be selected according to the residual voltage principle and as overlap jump.

- Zero point correction (offset) [13]

Serves the correction of the zero point of the connected proportional servo valve.

Error detection and troubleshooting

The HACD supports numerous error monitoring possibilities:

- Monitoring of the analog inputs for undershooting or exceedance of the range
- Monitoring of the sensors for cable break
- Control error monitoring in case of configuration of the HACD as controller
- Monitoring of the supply voltage, all internal voltages as well as of the +10 V reference voltage
- Monitoring of the microcontroller itself (watchdog) as well as of the accumulator (check sum)
The error monitors as well as their reaction can be configured, as well.

Block diagram: Mode 3-structural editor

1 Analog inputs voltage or current
1a High-impedance input Al1
2 SSI or incremental
3 Release input and digital inputs
4 Adjustment analog inputs
5 Switching matrix
6 Math. linking of the inputs

732 blocks for command value generation, controller parameter switching
8 Math. linking and/or controller
9 Substitutional closed-loop control
10 Direction-dependent gain
11 Characteristic curve adjustment

12 Residual velocity and overlap jump
13 Offset
14 Limitation
15 Analog outputs voltage or current
16 OK output and digital outputs
17 Math. linking of the outputs

System overview, interfaces

Superior control

Possible interfaces with the VT-HACD-3-2X:

- Analog signals
- Digital inputs / outputs

Example:

- Serial interface
- Bus systems

VT-HACD-3-2X/... with hydraulic cylinder axis

[^33]5 Connection cable
6 Pressure transducer
7 Sandwich plate isolator valve (with plug-in switching amplifier)

Technical data

Operating voltage ${ }^{1)}$	U_{B}	18 to 30 VDC
Current consumption at 24 VDC		200 mA (observe additional power for connected sensors/actuators)
Processor		32 bit power PC
Analog inputs (Al) - Voltage inputs (differential inputs) - Channel number - Input voltage - Input resistance - Resolution - Non-linearity - Calibration tolerance - Current inputs - Channel number - Input current - Leakage current - Resolution	Quantity U_{E} R_{E} I Iv	```6 max. 6 (selectable via software) max +15 V to -15 V (+10 V to -10 V analyzable) > 10 M\Omega (Al1) 200 k\Omega \pm5 % /Al2 to Al6) 5 mV \pm0.25 % max. }40\textrm{mV}\mathrm{ (with factory settings) max. 6 (selectable via software) 0... }20\textrm{mA 0.1 to 0.4 % 5\mu\textrm{A}```
Analog outputs AO1 configuration as voltage output Output voltage Output current Load Resolution Residual ripple AO1 configuration as current output Output current Load Resolution Residual ripple AO2 / AO3 Output voltage Output current Load Resolution Residual ripple	Quantity $\begin{array}{r} U \\ I_{\max } \\ R_{\mathrm{Lmin}} \\ \\ I \\ R_{\max } \\ \\ \\ U \\ I_{\max } \\ R_{\min } \end{array}$	```3 0...10 V or }\pm10\textrm{V}\mathrm{ (configurable) 10 mA 1 k\Omega 1.25 mV (14 bit) \pm15 mV (without noise) 0... }20\textrm{mA}\mathrm{ or 4... }20\textrm{mA}\mathrm{ (configurable) 500\Omega 1.25 \mu\textrm{A} \pm15 \mu\textrm{A}}\mathrm{ (without noise) \pm10 V 10 mA 1 k\Omega 1.25 mV (14 bit) \pm25 mV (without noise)```

[^34] VT-HACD-3-2X (supply voltage is looped in), the transducer specification has to be observed.

Technical data, (continued)

X3C, Interface for BODAC X7P, Bus interface X7E1(2), Ethernet interface	RS232 PROFIBUS DP (max. 12 MBaud according to IEC 61158) PROFINET RT, EtherNet/IP
Switching inputs (DI) and/or outputs (DO)	
Quantity	DI $=9 / \mathrm{D} 0=8$
Gate inputs (DI) Logic level	$\begin{aligned} & \log 0(\text { low }) \leq 5 \mathrm{~V} ; \log 1 \text { (high }) \geq 10 \mathrm{~V} \text { to } U_{\mathrm{B}}, \\ & I_{\mathrm{e}}=7 \mathrm{~mA} \text { at } U_{\mathrm{B}}=24 \mathrm{~V} \end{aligned}$
Port	Flexible conductor up to $1.5 \mathrm{~mm}^{2}$
Gate outputs (DO) Logic level	$\log 0$ (low) $\leq 2 \mathrm{~V}$; $\log 1$ (high) $\leq U_{\mathrm{B}} ; I_{\max }=20 \mathrm{~mA}$, Maximum load capacity $\mathrm{C}=0.047 \mu \mathrm{~F}$
Port	Flexible conductor up to $1.5 \mathrm{~mm}^{2}$
Reference potential for all signals	GND
Digital position transducer (encoder)	
- Incremental transducer (transducer with TTL output)	
- Input voltage $\quad \log 0$	0 to 1 V
$\log 1$	2.8 to 5.5 V
- Input current $\quad \log 0$	-0.8 mA (with 0 V)
$\log 1$	0.8 mA (with 5 V)
- max. frequency referring to Ua1 $f_{\text {max }}$	250 kHz
- SSI transducer (Due to the higher control quality, an SSI transducer with clock synchronization should be used.)	
- Coding	Gray code, binary code
- Line receiver / line driver	RS485
- Voltage supply for SSI transducer via the VT- HACD-3-2X	U_{B}, max. 200 mA
Reference potential for all signals	GND
Reference voltage per axis electronics $\quad U_{\text {ref }}$	+10 V $\pm 25 \mathrm{mV}(20 \mathrm{~mA})$
Dimensions	See page 14
Installation	Top hat rail TH 35-7.5 or TH 35-15 according to EN 60715
Admissible operating temperature range ৩	0 to $50{ }^{\circ} \mathrm{C}$
Storage temperature range ৩	-20 to $+70^{\circ} \mathrm{C}$
Protection class according to EN 60529:1991	IP 20
Weight	
without EtherNet module mm	930 g
with EtherNet module m m	1162 g
CE conformity	See page 2

Further technical details upon request.

Note:

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see data sheet 30543-U.

Pinout

X3C	
RS232	
Pin	
1	LCAN_H
2	TxD
3	RxD
4	Reserved
5	GND
6	Reserved
7	Reserved
8	Reserved
9	LCAN_L

X1S	
Pin	Power
1	GND
2	GND
3	$18-30 \mathrm{~V}$

X2M1	Encoder/DIO (digital)
1clk+	2clk+
1clk-	2clk-
1D/A+	2D/B +
1D/A-	$2 \mathrm{D} / \mathrm{B}-$
Z+	Z-
24 V	24 V
GND	GND
DI1	DO1
DI2	DO2
DI3	DO3
DI4	DO4
DI5	DO5
DI6	DO6
DI7	DO7
DI8	ok

3

X2A1	AlO (analog)
Ref	Enable
$\mathrm{Al} 1+$	$\mathrm{Al1-}$
$\mathrm{Al2+}$	$\mathrm{Al2-}$
$\mathrm{Al3}+$	$\mathrm{Al3-}$
$\mathrm{Al} 4+$	$\mathrm{Al} 4-$
$\mathrm{Al5+}$	$\mathrm{Al5-}$
$\mathrm{Al} 6+$	$\mathrm{Al} 6-$
AO 1	AO 2
AO 3	AGND

X7E1, X7E2

Ethernet ports

Notes:

- The pins marked with "reserved" are reserved and must
not be wired!
- PROFIBUS DP (port X7P/D) is not available with the Ethernet version.

Unit dimensions (dimensions in mm)

VT-HACD-3-2X/ (without Ethernet)

Installation on top hat rail TH 35-7.5 or TH 35-15 according to EN 60715

VT-HACD-3-2X/
(with Ethernet)

Project Planning / Maintenance Instructions / Additional Information

Product documentation for VT-HACD-3-2X
 Data sheet 30543
 Operating instructions 30543-B
 Environmental compatibility statement 30543-U
 BODAC software description 30543-01-B
 Start-up PROFIBUS Interface 30543-01-Z
 Start-up EtherNet/IP Interface 30543-04-Z
 Start-up PROFINET RT Interface 30543-05-Z
 !
 General Information on the maintenance and commissioning of hydraulic components 07800/07900

Commissioning software and documentation on the Internet: www.boschrexroth.com/HACD

Maintenance instructions:

- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. The repaired units will be supplied with default settings. User-specific settings are not maintained. The operator will have to re-transfer the corresponding user parameters and programs.

Notes:

- Electric signals taken out via control electronics (e.g. signal "No error") may not be used for the actuation of safety-relevant machine functions! (See also the European standard "Safety requirements for fluid power systems and their components Hydraulics", EN 982.)
- If electromagnetic interference must be expected, take appropriate measures to safeguard the function (depending on the application, e.g. screening, filtration)!
- For more information refer to the BODAC software description 30543-01-B and the 30543-B operating instructions
- The upper and lower ventilation slots must not be concealed by adjacent units in order to provide for sufficient cooling.

Notes

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax $\quad+49(0) 9352 / 18-2358$
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Digital command value and controller card

Type VT-HACD-1

Component series 1X

Table of contents

Contents

Page
Features, ordering code 2
Software project planning 3
Functional description 4
Block diagram: VT-HACD-1, mode 1 - block calls 7
Block diagram: VT-HACD-1, mode 3 - structural editor 8
Technical data 10
Pin assignment of the male multipoint connector 12
Pin assignment of the D-Sub sockets 12
Unit dimensions 13
Project planning / maintenance instructions / additional information

Features

- Use as command value card for generating, linking and standardizing signals
- Use as controller card for closed control loops with PIDT1 controller and optional state feedback
- Substitutional closed-loop (e.g. position control with superimposed pressure/force control) possible
- Input for digital measuring system SSI and incremental
-6 analog inputs, voltage ($\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$) and current ($4 \ldots . .20 \mathrm{~mA}$) selectable
- 3 analog outputs, $1 x$ switchable voltage ($\pm 10 \mathrm{~V}, 0 \ldots 10 \mathrm{~V}$) or current ($0 \ldots 20 \mathrm{~mA}, 4 \ldots 20 \mathrm{~mA}$), 1 x voltage ($\pm 10 \mathrm{~V}$)
- Various possible signal linking and switch-over options
- Enable input and OK output
- 8 digital inputs
- 7 digital outputs, configurable
- Parameterizable ramp function
- 32 blocks with command values, velocities and controller parameters
- Adjustment to hydraulic drive by means of area adjustment, characteristic curve correction, overlap compensation, residual velocity logic and zero point correction.
$- \pm 10 \mathrm{~V}$ reference voltage output
- Front display with keys for parameter display and modification as well as diagnosis
- Serial interface RS232
- Up to 32 cards can be interconnected for parameterization and diagnosis via the local bus
- Configurable analog output (A03) led onto connector strip
- PROFIBUS DP, PROFIBUS DP in Motorola format, DeviceNet or CANopen for the communication with a superior control (For CANopen, there is no standard EDS file available as the data is transmitted by the CANopen PDOs.)

Ordering code

Required accessories:

- PC program BODAC: CD ordering information: SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/hacd
- Interface cable: Cable set VT-HACD-1X/03.0/HACD-PC (R900776897) or standard 1:1 cable
- Optionally available USB adapter VT-ZKO-USB/S-1-1X/V0/0
- Plug-in connector type 6ES7972-0BA42-0XA0 for PROFIBUS DP, mat. no. R901312863

Suitable card holder:

- 19 inch racks VT 19101, VT 19102, VT 19103 and VT 19110 (see data sheet 29768)
- Closed card holder VT 12302 (see data sheet 30103), mat. no. R900784153
- Open card holder VT 3002-2X/64G (see data sheet 29928), mat. no. R900991843 (only for control cabinet installation)
- Connection adapter VT 10812-2X/64G (see data sheet 30105), mat. no. R900713826

Software project planning

Project planning

The creation of a parameter file forms the basis for the function of the HACD. The parameter file contains the block structure of the HACD in which the links of the variables will be created. The parameter files are created in BODAC. The parameter file can be created offline and transferred to the HACD by means of a PC.
Proceed as follows for this software project planning:

1. Selection of the HACD.
2. Application is defined by means of the block structure.
3. Setting of the parameter values (sensors, controllers...).
4. The data is sent to the HACD.
5. Storage of the data in the flash.
6. The setting and the machine sequence are optimized at the machine.

PC program BODAC

The user can use the BODAC PC program for the implementation of project planning tasks. BODAC can be used for the programming, setting and diagnosis of the HACD.

Scope of services

- Convenient dialog functions for the online or offline setting of the machine data
- Dialog window for the online setting of the parameter values
- Comprehensive options for displaying process variables, digital inputs, outputs, and flags
- Recording and graphical presentation of up to eight process parameters with a great choice of trigger options

PC system requirements

- Windows XP, Windows Vista, Windows 7
- Memory usage 64 MB typical
- 250 MB of available hard disk capacity

Notice:

The BODAC PC program is not included in the scope of delivery. It can be downloaded on the Internet free of charge.
Download on the Internet: www.boschrexroth.com/hacd
Enquiries: support.hacd@boschrexroth.de

Service interface

- RS 232

Process connection

- PROFIBUS DP, PROFIBUS DP in Motorola format, CANopen for the communication with a superior control (for CANopen, there is no standard EDS file available)

More information

www.boschrexroth.com/hacd

Functional description

The command value and controller card VT-HACD-1 is set up as printed circuit board in Europe format $100 \times 160 \mathrm{~mm}$, fitted on both sides.
A microcontroller controls the entire process, makes adjustments, establishes links and realizes the closed control loops. Data for configuration, command values and parameters are stored in a FLASH in a non-volatile form.
The complete configuration is made by means of software, the card does not comprise jumpers or the like. For the configuration, the VT-HACD has to be connected to a PC via a serial interface (RS 232, 1:1 cable). The BODAC user interface is used for the entire configuration and also for the parameterization and diagnosis.
The configuration and thus the creation of applications are very simple - you just have to link pre-defined functional components. For this purpose, no programming knowledge is necessary.
2 different modes are available:

- Mode 1 (not bus-enabled) - Block calls (condition as supplied)
The 32 blocks can be called via the binary combination of the digital inputs DI1...DI5 + DI6 as "binary enable". This mode is functionally compatible with VT-SWKD.
- Mode 3 (bus-enabled) - Structural editor The structural editor is unlocked. Own motion sequences can be established. For this purpose, 32 blocks are available.
Every block comprises: Command value, ramp times, (velocity +, velocity -, S share) and controller parameters.
Blocks are activated by setting trigger conditions: Setting digital inputs, comparing signals with freely definable thresholds or expiry of waiting periods.
You can change to another mode by simply saving a corresponding parameter set which is included in the BODAC scope of delivery.

Signal linking

The VT-HACD has various signal linking options both for the input and the output side, whereas 2 signals each can be linked. These are functions such as addition, subtraction, multiplication, division as well as minimal/maximal value generator, area ratio and limiter:

+ = addition: $\mathrm{Z}=\mathrm{X}+\mathrm{Y}$
- = subtraction: $Z=X-Y$
* $=$ multiplication: $Z=X$ * $Y / 100$
/ = division: $Z=X / Y * 100$
$\mathrm{MIN}=$ minimum value generator: $\mathrm{Z}=\mathrm{MIN}(\mathrm{X}, \mathrm{Y})$
MAX = maximum value generator: $Z=\operatorname{MAX}(X, Y)$
RATIO = ratio input:
For RATIO $>1: Z=X$ RATIO $-Y$
For RATIO <1: $Z=X-Y / R A T I O$
(e.g. area ratio for differential pressure measurement)

LIMIT = signal limiter: $\mathrm{Z}=\mathrm{MIN}(|\mathrm{X}|,|\mathrm{Y}|){ }^{*} \mathrm{X} /|\mathrm{X}|$
JUMP = jump generator: $\mathrm{Z}=\mathrm{MAX}(|\mathrm{X}|,|\mathrm{Y}|)^{*} \mathrm{X} /|\mathrm{X}|$
with $\quad Z \ldots$ result
X... 1st signal
Y... 2nd signal

Analog I/O

For the 6 analog inputs, you can switch between $\pm 10 \mathrm{~V}$, $0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ by means of the software. For the analog output AO1, you can switch between $\pm 10 \mathrm{~V}$, $0 \ldots 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ and $4 \ldots 20 \mathrm{~mA}$ by means of the software. AO2 is fixedly set to $\pm 10 \mathrm{~V}$. A03 can be configured by means of software and is e.g. suitable for diagnosis purposes.
The output is switched so that the whole range of the analogdigital connector is used.
Both working range and error identification can be defined for all analog inputs.
The analog outputs can be adjusted by means of amplification and offset.

Digital I/O

The VT-HACD has 9 digital inputs and 8 digital outputs.
An input has the fix functionality Enable, a digital output the fixed functionality OK.
Further digital inputs are used for the triggering of blocks (see blocks and triggering).
The function of each digital output can be determined by the selection from a predefined list:

- Command value = actual value
- Actual value higher or lower than the adjustable threshold
- Waiting time completed
- Ramp active
- Internal flag set
- Error flag set

Functional description (continued)

Digital position measurement system

If you use the VT-HACD as controller card, digital position measurement systems of type SSI or incremental can be used for actual value collection.

Limitations of use for the incremental encoder

The maximum frequency of the incremental encoder input $\left(f_{G}\right)$ of the VT-HACD is 100 kHz . The maximum travel velocity of the drive, the resolution (res) of the encoder system used and the possible signal evaluation by EXE (interpolation and digitalization electronics) determine the frequency.

Determination formulas

Encoder resolution at given maximum velocity:
$\operatorname{Res}[\mu \mathrm{m}] \geq \frac{v\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right] \times 10^{3}}{\mathrm{f}_{\mathrm{G}}[\mathrm{kHz}] \times \text { EXE }}$
Velocity at specified encoder resolution:
$v\left[\frac{\mathrm{~m}}{\mathrm{~s}}\right] \leq \frac{\operatorname{Res}[\mu \mathrm{m}] \times \text { EXE } \times \mathrm{f}_{\mathrm{G}}[\mathrm{kHz}]}{10^{3}}$

Controller

If the VT-HACD is used as controller card, you must select "Controller" for the signal connection [8].
The LCx signals indicate the command value branch, the LFBx signals indicate the actual value branch. [8]
Both SSI encoder or incremental encoder [2] (digital measuring system) and one or more analog sensors can be used as actual value signal.
The controller structure is designed as PIDT1 controller, whereas each share can be activated or deactivated individually. Thus, also a P or PT1 controller can be implemented for example. The I share can additionally be controlled via a window (upper and lower limit).
Control parameters can be set in blocks or independently of blocks.
In mode 3, a state feedback can be used for dampening the controller output.

Controller structure:

Adjustment to hydraulic system

For the optimum adjustment to the particularities of hydraulic drives, the following functions are implemented upstream the analog output:

- Direction-dependent gain [10]

For positive and negative values, the amplification can be set separately. In this way, adjustment to the area ratio of a single-rod cylinder is possible.

- Characteristic curve correction [11]

In this way, the progressive flow characteristic of proportional directional valves is compensated or an inflected characteristic curve is realized.

- Overlap jump/residual velocity [12]

When using valves with positive overlap, a fine positioning can be used in case of a PDT1 controller in order to increase the static accuracy. This fine positioning can be selected according to the residual voltage principle and as overlap jump.

- Zero point correction (offset) [13]

Serves the correction of the zero point of the connected proportional servo valve.

Error identification and treatment

The VT-HACD supports numerous error monitoring possibilities:

- Monitoring of the analog inputs for lower deviation or exceedance of the range
- Monitoring of the position sensors for cable break
- Control error monitoring when configuring the HACD as controller
- Monitoring of the supply voltage, any internal voltage as well as the 10 V reference voltage
- Monitoring the microcontroller (watchdog) as well as the memory (checksum)
The error monitoring as well as its reaction can be configured as well.

Functional description (continued)

Front operation

In connection with the four keys, the front display is used to display and change parameters as well as for diagnosis purposes.
The VT-HACD parameters are accessed via a corresponding menu structure. The parameter values can be displayed and changed.
The following parameters can be accessed:

- Command value and ramp parameters
- Actual value
- Control parameters
- Output parameters
- Analog I/O
- Position sensors

Changes in the configuration, i.e. changes in the signal linking, trigger conditions, error monitoring, etc. are not possible via the front operation.
The display of command and actual values as well as the output of error messages are available as diagnosis options.

Valve output stage [18] (optional)
The following applies to the valve output stage:

- Only available in connection with PROFIBUS
- Only for valves of type 4WRE... 2 X with two solenoids
- Can only be activated in mode 3

Error logics identify a cable break of the actual value line of the valve position sensor. Readiness for operation is removed, a low signal is output at connection d22 and the "OK" LED on the front plate goes out.

PC program BODAC

The BODAC PC program is used to configure, parameterize and diagnose the VT-HACD via a serial interface (RS 232). Via the local bus, up to 32 control electronics can be connected. Via BODAC, every control electronics is assigned a bus address. Reconnection of the serial interface cable is omitted. More information in document 30143-01-B.

Block diagram: VT-HACD-1, mode 1 - block calls

1 Analog voltage or current inputs
2 SSI or incremental
3 Enable input and digital inputs
4 Analog input adjustment
8 Math. connection and/or controller

9 Substitutional control
10 Direction-dependent gain
11 Adjustment of the characteristic curve
12 Residual velocity and overlap jump
13 Offset
14 Limitation

Technical data (For applications outside these parameters, please consult us!)

Operating voltage	U_{B}	24 VDC
Operating range:		
Upper limit value	$\mathrm{U}_{\mathrm{B}}(\mathrm{t})_{\text {max }}$	30 V
Lower limit value	$\mathrm{u}_{\mathrm{B}}(\mathrm{t})_{\text {min }}$	21 V
Current consumption	$I_{\text {max }}$	Standby current consumption 250 mA
Fuse	$I_{\text {S }}$	4 A time-lag
Digital inputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=16 \mathrm{~V} \text { to } U_{\mathrm{B}} \\ & \hline \end{aligned}$
Digital outputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=16 \mathrm{~V} \text { to }\left(U_{\mathrm{B}}-3 \mathrm{~V}\right) \\ & I_{\max }=30 \mathrm{~mA} \\ & \hline \end{aligned}$
Analog inputs Al 1...6		
Configuration as voltage input		
Range	U	0 to 10 V or $\pm 10 \mathrm{~V}$ (configurable)
Input resistance	$R_{\text {e }}$	$100 \mathrm{k} \Omega,>10 \mathrm{M} \Omega$ for input Al 1
Resolution		5 mV for range $\pm 10 \mathrm{~V}$ 2.5 mV for range $0 . . .10 \mathrm{~V}$
Non-linearity		< 10 mV
Configuration as current input		
Range	I	0... 20 mA or 4... 20 mA
Input resistance	$R_{\text {e }}$	100Ω
Leakage current		0.15% (with 500Ω between pin Al x - and 0 V)
Resolution		$5 \mu \mathrm{~A}$
Analog outputs		
AO 1 configuration as voltage output		
Output voltage	U	$0 . .10 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ (configurable)
Output current	$I_{\text {max }}$	10 mA
Load	$R_{\text {Lmin }}$	$1 \mathrm{k} \Omega$
Resolution		1.25 mV (14 bit)
Residual ripple		$\pm 15 \mathrm{mV}$ (without noise)
AO 1 configuration as current output		
Output current	1	0... 20 mA or $4 . . .20 \mathrm{~mA}$ (configurable)
Load	$R_{\text {max }}$	500Ω
Resolution		$1.25 \mu \mathrm{~A}$
Residual ripple		$\pm 15 \mu \mathrm{~A}$ (without noise)
AO 2 / AO 3		
Output voltage	U	$\pm 10 \mathrm{~V}$
Output current	$I_{\text {max }}$	10 mA
Load	$R_{\text {min }}$	$1 \mathrm{k} \Omega$
Resolution		10 mV (11 bit)
Residual ripple		$\pm 25 \mathrm{mV}$ (without noise)
Reference voltage	U	$\pm 10 \mathrm{~V}$
Load	$I_{\text {max }}$	30 mA
Residual ripple		$<20 \mathrm{mV}$
Scan time	t	2 ms

Technical data (continued)

Valve output stage (optional) Solenoid current per solenoid
Valve position sensor
Oscillator amplitude
Oscillator frequency

$R_{20} \begin{aligned} & \text { between coil connection 1 and 2: } \\ & \text { between coil connection 3 and 4: }\end{aligned}$
21 to 24Ω
For more technical data for valve 4WRE...2X see data sheet 29061

Serial interface	RS 232 (front plate), D-Sub socket
Type of connection	64 -pole male multipoint connector, DIN 41612, design G
Local bus, distance to the furthermost participant	\prime
Card dimensions 280 m line length	
Front plate dimensions:	Euro-card $100 \times 160 \mathrm{~mm}$, DIN 41494
\quad Height	
\quad Width soldering side	$3 \mathrm{HE}(128.4 \mathrm{~mm})[5.06$ inches]
\quad Width component side	$1 \mathrm{TE}(5.08 \mathrm{~mm})[0.20$ inches]
Admissible operating temperature range	7 TE
Storage temperature range	\ddots
Weight to $50^{\circ} \mathrm{C}\left[0\right.$ to $\left.122^{\circ} \mathrm{F}\right]$	

Notice:

For information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load, see data sheet 30143-U.

Pin assignment of the male multipoint connector

Pin	Row z	Row b	Row d		Row f	
$2{ }^{5)}$	Solenoid A+ MA+	Analog input Al 3+	Digital input	DI 1	Digital output	DO 7
4 5)	Solenoid A- MA-	Analog input Al 3-	Digital input	DI 2	SSI clock +	
$6{ }^{5)}$	Solenoid B+ MB+	Analog input $\mathrm{Al} \mathrm{2+}^{1)}$	Digital input	DI 3	SSI clock -	
$8^{5)}$	Solenoid B+ MB-	Analog input $\mathrm{Al} \mathrm{2-}^{1)}$	Digital input	DI 4	SSI data +; Inc Ua1	
$10^{5)}$	Shield	Analog input $\mathrm{Al} 1+{ }^{3}$	Digital input	DI 5	SSI data -; Inc /Ua1	
$12{ }^{5)}$	Position transducer of valve feed - L1O-	Analog input \quad Al 1-3)	Digital input	DI 6	Inc Ua2	
14 ${ }^{5)}$	Position transducer of valve actual value - L11-	Analog input \quad Al $4+{ }^{1)}$	Digital input	DI 7	Inc /Ua2	
$16{ }^{5)}$	Position transducer of valve actual value + L11+	Analog input Al 4-1)	Digital input	DI 8	Inc Ua0	
$18{ }^{5)}$	Position transducer of valve feed + L1O+	Analog input Al 5+ ${ }^{\text {1 }}$	Enable	DI 9	Inc /Ua0	
20	System earth	Analog input Al 5- ${ }^{1)}$	Digital output	DO 1	n.c.	
22	Digital output DO 3	Analog input Al 6+ ${ }^{1)}$	OK		n.c.	
24	Digital output DO 4	Analog input Al 6- ${ }^{1}$	Local bus	Data+	n.c.	
26	Digital output DO 5	Analog output AO $3, \pm 10 \mathrm{~V}$	Digital output	DO 2	n.c.	
28	Digital output DO 6	Analog GND ${ }^{\text {4) }}$	Local bus	Data-	CAN Gnd	
30	$U_{B}:+24 \mathrm{~V}$	-10 V REF-	Analog output	AO $1^{2)}$	CAN L	
32	LO: 0 V	+10 V REF+	Analog output A	$\pm 10 \mathrm{~V}$	CAN H	

${ }^{1)}$ By means of software, the inputs $\mathrm{Al} 2,4,5$ and 6 can be set to $0 \ldots 10 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$.
2) By means of software, the output $A O 1$ can be set to $0 \ldots 10 \mathrm{~V}, \pm 10 \mathrm{~V}, 0 \ldots 20 \mathrm{~mA}$ or $4 \ldots 20 \mathrm{~mA}$.
${ }^{3)}$ This input has an input resistance $R_{\mathrm{e}}>10 \mathrm{M} \Omega$
4) Reference potential for $\mathrm{AO} 1, \mathrm{AO} 2, \mathrm{AO} 3,+10 \mathrm{~V}$ and -10 V
${ }^{5)}$ Only for option with valve output stage
n.c. Not used in basic version, however reserved for extensions.

Pin assignment of the D-Sub sockets on the front plate

RS 232

PROFIBUS

Unit dimensions (dimensions in mm [inch])

Project planning / maintenance instructions / additional information

Product documentation for VT-HACD-1

30143 Technical data sheet (this document)
30143-01-B Commissioning and operating instructions
30143-01-Z Commissioning instructions PROFIBUS DP interface
30143-03-Z Commissioning instructions DeviceNet interface
Additional information for replacing the VT-SWKD by

- Use low-capacitance cables. If possible, design the cable connections without intermediate terminals.
- Electromagnetic sources of interference (e.g. frequency converters) must not be arranged in the immediate vicinity of the control electronics.
- Power cables must not be laid in the immediate vicinity of the controller card.
- Lines of the controller electronics must not be laid in the immediate vicinity of power cables.
- Pass the sensor lines separately.
- The distance to aerial lines, radios, and radar systems has to be 1 meter at least.
- Design the installation so that when the differential inputs are used, both inputs are always connected or disconnected at the same time.
- For switching command values, relays with gold contacts have to be used. (Low voltages, low currents)
- Always shield command value lines and actual value lines. Connect the shield to "Shield" on the card side and leave the other side open as otherwise, there is the risk of ground loops.
- Use highly flexible CU conductors (at least $2.5 \mathrm{~mm}^{2}$) in order to connect the system earth

The system earth is a main part of the EMC protection of the controller card. Here, interference is eliminated which is transported to the controller card via the data and supply voltage lines. This function is only ensured if the system earth itself does not introduce interference into the controller card. Rexroth recommends screening the solenoid lines as well.

- Do not use electrical signals led out via control electronics (e.g. the "OK" signal) for switching safety-relevant machine functions (In this connection, also observe EN ISO 13849 - "Safety of machinery - Safety-related parts of control systems").

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Digital Controller for electrohydraulic Injection Molding Machines

Type VT-HACD-DPQ

Component series 2 X

Table of contents

Contents

Features
Ordering code
Functional description: Overview
Functional description: Injection control
Block circuit diagram
Technical data
Pin assignment of male connector
Pin assignment of D-sub socket on the front panel
Unit dimensions
Engineering / maintenance notes / supplementary information

Features

- Actual value acquisition possible by means of SSI encoder, incremental or analogue position measuring system
- Free configuration for valve spool
- Loop tuning with ramps
- Jog mode
- Separate menus for Injection, "Pack and Hold" and Back Pressure
- Pressure transfer by:
- Position
- Cavity pressure
- Hydraulic pressure activated by position
- Discrete input
- Enable input and OK output
$- \pm 10 \mathrm{~V}$ reference voltage output
- Front display with keys for displaying and changing parameters as well as for diagnosis purposes
- RS232 serial interface
- Up to 32 control electronics for parameterization and diagnosis can be interconnected via local bus
- Internal or analogue profile
- I/O configuration

Ordering code

Standard types	Material number
VT-HACD-DPQ-1-2X/V0/1-0-0	R901054664
VT-HACD-DPQ-1-2X/V0/1-C-0	R901119884

Required accessories:

- PC program BODAC: Ordering code of the CD:

SYS-HACD-BODAC-01 (R900777335) or free download on the Internet at www.boschrexroth.com/hacd

- Interface cable: Cable set VT-HACD-1X/03.0/

HACD-PC (R900776897) or commercial 1:1 cable

- USB adapter optionally available VT-ZKO-USB/S-1-1X/V0/O

Suitable card holders:

- 19" rack types VT 19101, VT 19102, VT 19103 and VT 19110 (see RE 29768)
- Enclosed card holder type VT 12302 (see RE 30103) (standard), mat. no. R900784153
- Open card holder type VT 3002-2X/64G (see RE 29928), mat. no. R900991843 (for installation in control cabinet only!)
- Connection adapter VT10812-2X/64G (see RE 30105), mat. no. R900713826

Suitable power supply unit

- Compact power supply unit type VT-NE30, see RE 29929

Functional description: Overview

Overview

The VT-HACD-DPQ is a digital controller card. It optimizes the control of a hydraulic injection axis.

- Injection velocity profiles are controlled completely by use of closed loop position control. An advanced position command profile is calculated automatically based on the operator input velocity profile.
- Because the VT-HACD-DPQ is a position control device it requires a position feedback transducer. Both, analogue ($0 . . .10 \mathrm{~V} ; \pm 10 \mathrm{~V} ; 0 \ldots 20 \mathrm{~mA} ; 4 \ldots 20 \mathrm{~mA}$) and digital types (SSI, INCR) are supported by the VT-HACD-DPQ.
- The VT-HACD-DPQ includes injection force-limiting control that can be configured to work with 1 or 2 pressure transducers or a load cell.
- The injection velocity and pressure profiles may be controlled with one proportional directional hydraulic valve or separate valves for flow and pressure.
- Motion profile command values are normally transferred into the VT-HACD-DPQ from a PLC (analogue). The profiles may also be entered into the card using the Bosch Rexroth BODAC software.

Function

The VT-HACD-DPQ is a complete hydraulic injection axis control solution. An injection profile is created from parameters that are entered by the machine operator. All injection cylinder process parameters are then stored on the card. Parameter changes may be individually loaded into the VT-HACD-DPQ, or the entire profile loaded at one time. The VT-HACD-DPQ maintains the last saved profile in a non-volatile flash memory. A single injection profile is stored on the card. A discrete input (enable) is required to enable the VT-HACD-DPQ.

Functional description: Injection control

Mould fill profile

A velocity profile of up to ten steps is provided to fill the mould cavity.
A maximum pressure/force limit may be set for each profile step. The injection cylinder is traversed under closed loop control on the basis of the velocity profile (closed-loop position control).
At the start of inject forward the internal position command value is set equal to the current cylinder position feedback and then ramped forward at a rate of movement corresponding to the velocity command in the current profile step. The steps are followed in subsequent order. Each step in the profile is initiated when the internal position command value has been reached. Repeatability of the profile is determined by adjusting the proportional gain as high as possible so the injection cylinder closely follows the internal position command value under varying load conditions. This type of system is used because it is relatively unaffected by changes in plastic material properties or temperature. Because the position control loop is a ramp of position command value over time, the change of velocity between the profile steps is seamless and does not require any extra ramp adjustments.

Transfer to Hold Pressure

The VT-HACD-DPQ begins the "hold pressure" profile when any of the predetermined transfer criteria are achieved. Transfer criteria available in the stored profile are hydraulic pressure, cylinder position, and mould cavity pressure or digital input 3 (DI3). All of the transfer criteria are continuously monitored, so any criteria not used must be set to a value that will not be reached during the mould fill velocity profile. The hydraulic pressure command value is enabled only if the injection cylinder position is less than the hydraulic transfer position parameter.
This allows the initial acceleration pressure to be higher than the transfer pressure without triggering the hold pressure profile. The machine control may also initiate the transfer on the basis of a digital input (DI3).
The completion of the process is signalled to the machine control via digital input DO1.

Hold Pressure Profile

A pressure profile up to five steps long is available for pack and hold. Once the hold profile is initiated, the VT-HACD-DPQ changes mode into closed-loop pressure/force control with superimposed open loop velocity control. Any remaining steps in the velocity profile are ignored. In each step the pack and hold profile, pressure (force), time, and velocity limit can be adjusted.
Step 1 in the profile is started at the time of transfer. Each subsequent step in the pack and hold profile is initiated when the previous step timer is finished.
The velocity limit in step 1 of the pack and hold profile is typically used to prevent the injection cylinder from lunging forward to build up pressure/force when transfer by position is used. This also allows the DPQ to react faster when transfer by hydraulic mould cavity pressure is initiated, by closing down the flow control valve to a smaller opening within 2 msec of transfer, preventing pressure/force overshoots. The velocity limit
in the subsequent pack and hold profile steps is typically set higher so it does not limit the dynamic response of the pressure/force control loop.

Pre-Decompress

After the last timer is completed in the hold pressure profile, the VT-HACD-DPQ automatically decompresses the screw. Pre-decompress is active if the pre-decompress position parameter is greater than the actual injection cylinder position at the end of the pressure hold profile. The pre-decompress velocity parameter is an open loop valve command. Pre-decompression is complete once the injection cylinder position is equal to or greater than the pre-decompress position parameter. At the end of pre-decompression the VT-HACD-DPQ raises a signal to the machine control that decompress is complete. The valve outputs are set to OV at the end of pre-decompression.

Back pressure

To begin recovery the machine control raises the recovery discrete input DI. The VT-HACD-DPQ then controls the injection unit recovery based on the position, velocity, and pressure parameters in a 3 -step recovery profile.
Back pressure is closed-loop controlled with an open loop velocity limit. The next step in the recovery profile is triggered by the increasing injection cylinder position as recovery continues. When applied to a single injection valve hydraulic circuit the velocity parameter for each back pressure step is set as a forward valve opening limit. When applied to a hydraulic circuit which uses a separate back pressure proportional relief valve the velocity parameter can be set to whatever valve command is necessary for the injection directional proportional valve, for example screw motor speed on some hydraulic systems.
Screw recovery mode is complete when the injection cylinder position is equal to or greater than the shot size parameter. The VT-HACD-DPQ signals to the machine control when shot size is reached. Back pressure control will be maintained until post decompress begins.

Post Decompress

When the post decompress discrete input (DI6) is raised by the machine control, the post decompress mode is started, if the injection cylinder position is equal to or greater than the shot size. The post decompress velocity parameter is an open loop valve command.
Post decompression is complete when the injection cylinder position is equal to or greater than the post decompress position parameter. When the post decompress position is reached, the VT-HACD-DPQ sets the valve outputs to $O V$ and signals this to the machine control.

Functional description: Injection control (continued)

Injection configuration options

The VT-HACD-DPQ can be applied in one of two injection configurations that depend on the hydraulic system.

1. Preferred configuration: closed-loop velocity profile and pressure control using one proportional injection valve and one analogue valve output. This type of system will control the injection velocity profile, pressure profile, back pressure, and screw decompress using a single proportional directional valve. The available dynamic response with this type of system is much better than with systems that use separate valves for flow and pressure control, which means that closed loop tuning can be adjusted for faster and more precise control.
2. Closed-loop velocity profile, and either closed or open-loop pressure control using one proportional directional or flow control valve for the velocity profile and one proportional pressure control valve for injection pressure control. There are two analogue valve outputs available for this configuration. This configuration does not require as high dynamic response from the proportional flow control valve as the single valve configuration. Overall system control will not be as dynamic or repeatable due to limitations of separating flow and pressure functions into multiple valves, and inherent dynamic limitations of proportional pressure control valves.
Additionally, the VT-HACD-DPQ may be configured so that the second valve output is controlled directly by a machine control instead of the internal pressure profile.

Applications

The VT-HACD-DPQ is configured to control injection moulding type applications, and all parameters are labelled to be recognizable in injection moulding applications. There are, however, many other applications that could benefit from the control quality afforded by the VT-HACD-DPQ.

- Transfer moulding
- Extrusion
- Broaching
- Rubber moulding
- Accumulator head blow moulding

Front panel operation

The front display is used in conjunction with the 4 push-buttons to display and change operator parameters.
Access is given to the following operator parameters:

- Mould fill profile
- Transfer parameters
- Hold pressure profile
- Recovery profile
- Decompress parameters

For safety reasons, set-up and configuration parameters are not accessible through the front panel.
Fault messages will be displayed when a fault occurs.

PC program BODAC

The PC program BODAC is used for the configuration, parameterisation and diagnosis of the VT-HACD-DPQ via a serial interface (RS 232). Up to 32 control electronics can be interconnected via the local bus. Each control electronics is assigned a bus address by means of BODAC. Re-plugging of the serial interface cable is not required. For further information, see RE 30146-01-B.

Technical data (for applications outside these parameters, please consult us!)

Operating voltage	U_{0}	24 VDC
Operating range:		
- Upper limit value	$\mathrm{u}_{0}(\mathrm{t})_{\text {max }}$	35 V
- Lower limit value	$u_{0}(t)_{\text {min }}$	21 V
Current consumption	$I_{\text {max }}$	150 mA
Fuse	I_{S}	4 A slow-blowing
Digital inputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=16 \mathrm{~V} \text { to } U_{0} \\ & \hline \end{aligned}$
Digital outputs	Signal	$\begin{aligned} & \log 0=0 \text { to } 5 \mathrm{~V} \\ & \log 1=16 \mathrm{~V} \text { to } U_{\mathrm{O}} \\ & I_{\max }=30 \mathrm{~mA} \\ & \hline \end{aligned}$
Analogue inputs Al1 ...Al6		
Configuration as voltage input		
Range	U	0 to 10 V or $\pm 10 \mathrm{~V}$ (configurable)
Input resistance	R_{i}	$100 \mathrm{k} \Omega,>10 \mathrm{M} \Omega$ for input Al 1
Resolution		5 mV for range $\pm 10 \mathrm{~V}, 2.5 \mathrm{mV}$ for range $0 . . .10 \mathrm{~V}$
Non-linearity		$<10 \mathrm{mV}$
Configuration as current input		
Range	1	0...20 mA or $4 . . .20 \mathrm{~mA}$ (configurable)
Input resistance	R_{i}	100Ω
Current loss		0.15% (at 500Ω between pin Al x - and 0 V)
Resolution	1	$5 \mu \mathrm{~A}$
Analogue outputs		
AO1 configuration as voltage output		
Output voltage	U	$0 . . .10 \mathrm{~V}$ or $\pm 10 \mathrm{~V}$ (configurable)
Output current	$I_{\text {max }}$	10 mA
Load	$R_{\text {Lmin }}$	$1 \mathrm{k} \Omega$
Resolution		1.25 mV (14 bit)
Residual ripple content		$\pm 15 \mathrm{mV}$ (without noise)
AO1 configuration as current output		
Output current	U	0... 20 mA or $4 . . .20 \mathrm{~mA}$ (configurable)
Load	$R_{\text {max }}$	500Ω
Resolution		$1.25 \mu \mathrm{~A}$
Residual ripple content		$\pm 15 \mu \mathrm{~A}$ (without noise)
AO2 / AO3		
Output voltage	U	$\pm 10 \mathrm{~V}$
Output current	$I_{\text {max }}$	10 mA
Load	$R_{\text {Lmin }}$	$1 \mathrm{k} \Omega$
Resolution		10 mV (11 bit)
Residual ripple content		$\pm 25 \mathrm{mV}$ (without noise)
Reference voltage	U	$\pm 10 \mathrm{~V}$
	$I_{\text {max }}$	30 mA
Residual ripple content		$<20 \mathrm{mV}$
Scanning rate	t	2 ms
Serial interface		RS232 (front panel), D-Sub socket
Type of connection		64-pin male connector, DIN 41612, form G
Local bus, distance to the farthest station	1	Max. 280 m cable length

Technical data (continued)

Card dimensions	Euro-card $100 \times 160 \mathrm{~mm}, \mathrm{DIN} 41494$
Front panel dimensions:	
- Height	$3 \mathrm{HE}(128.4 \mathrm{~mm})$
- Width soldering side	$1 \mathrm{TE}(5.08 \mathrm{~mm})$
- Width component side	7 TE
Permissible operating temperature range	ϑ
Storage temperature range	to $50^{\circ} \mathrm{C}$ Weight

Pin assignment of male connector

PIN	Row z	Row b	Row d	Row f
2	n.c.	Al3+: Cavity pressure ${ }^{1)}$	DI1: Back pressure	DO7: Pressure
4	n.c.	Al3-: Cavity pressure ${ }^{1)}$	DI2: Auto	SSI clock+
6	n.c.	Al2+: Pressure FB $1{ }^{1)}$	D13: Start hold pressure	SSI clock-
8	n.c.	Al2-: Pressure FB $1^{\text {1) }}$	DI4: Injection/jog+	SSI data+; Inc. Ua1
10	n.c.	Al1+: Pressure command ${ }^{1)}{ }^{\text {3) }}$	DI5: Incremental Home	SSI data-; Inc. /Ua1
12	Shield	Al1-: Pressure command ${ }^{1)}{ }^{\text {3) }}$	DI6: Post Decomp./jog-	Inc. Ua2
14	n.c.	Al4+: Act. pressure FB $2{ }^{1)}$	DI7: Analogue injection	/Inc. Ua2
16	n.c.	Al4-: Act. pressure FB $2{ }^{1)}$	DI8: Analogue comm. value	Inc. Ua0
18	n.c.	Al5+: Analogue cyl. position ${ }^{1)}$	Enable	/Inc. Ua0
20	System ground	Al5-: Analogue cyl. position ${ }^{1)}$	DO1: Actual velocity profile	n.c.
22	DO3: Back Presuure	Al6+: Velocity command ${ }^{1)}$	Card OK.	n.c.
24	DO4: Inject Forward	Al6-: Velocity command ${ }^{1)}$	Data+: Local bus	n.c.
26	DO5: Decom. Achieved	AO3: Valve output	DO2: Signal fault	n.c.
28	DO6: At Shot Size	Analogue GND	Data-: Local bus	CAN Gnd
30	UB: +24 V	-10 V	AO1: Valve output $1^{\text {2) }}$	CAN L
32	LO: 0 V	10 V	AO2: Valve output 2	CAN H

[^35]3) This input has an input resistance of $R_{\mathrm{i}}>10 \mathrm{M} \Omega$ n.c. ... not assigned in the basic version, but reserved for extensions.

Pin assignment of D-sub socket on the front panel

Unit dimensions (dimensions in mm)

Engineering / maintenance notes / supplementary information

Product documentation for VT-HACD-DPQ

RE 30146

Technical data sheet (this document)
RE 30146-B
Installation and operating instructions
RE 30146-01-B
Commissioning and operating instructions

RE 30146-U

Declaration on environmental compatibility

RE 30146-02-Z

Start-up CANopen Interface
RE 30146-03-Z
Start-up DeviceNet Interface

- Use low-capacitance cables. Whenever possible, establish cable connections without intermediate terminals.
- The arrangement of electromagnetic sources of interference (e.g. frequency converter) in the direct vicinity of the closed-loop control electronics is not permitted.
- Do not lay power cables in the direct vicinity of the controller card.
- Do not lay cables of the control electronics in the direct vicinity of power cables.
- Lay sensor cables separately.
- The distance to aerial lines, radio sources and radar equipment must be at least 1 metre.
- Engineer the system so that when the differential inputs are used, both inputs are always activated or deactivated simultaneously.
- Use relays with gold-plated contacts for passing on command values (small voltages, small currents).
- Always shield command value and actual value cables. Connect the shield to "shield" on the card side and leave the other end open, otherwise, there is a risk of earth loops.
- Use highly flexible CU conductors ($\min 2.5 \mathrm{~mm}^{2}$) for connecting the system ground! The system ground is an essential part of EMC protection of the controller card. It discharges interference that is transported via data and supply voltage cables to the controller card. This function can only be ensured, if the system ground itself does not inject interference into the controller card. Rexroth recommends that solenoid cables be shielded as well.
- Electrical signals brought out via control electronics (e.g. the "OK" signal) must not be used for switching safety-relevant machine functions!
(See also European Standard "Safety requirements for fluid power systems and components - hydraulics" EN982:1996)

Notes

Hydraulics

Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) $9352 / 18-0$
Fax $\quad+49$ (0) $9352 / 18-2358$
documentation@boschrexroth.de
www.boschrexroth.de
c This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Type VT-HNC100

Component series 3 X

Table of contents
Content

Page

Features 2
Ordering code 3
Software project planning 4
Overview of the controller functions 5
System overview 6
System overview, interfaces 7
Technical data 8
Pinout 12
Unit dimensions 17
Project planning / Maintenance instructions /
Additional information

Features

The digital axis control VT-HNC100...3X is a programma-
ble NC control for up to four controlled axes. It complies with the specific requirements for closed-loop control of hydraulic drives.
The VT-HNC100... 3 X is designed for being used in rough industrial environments as regards to interference immunity, mechanical vibration, shock, and climate resistance.

Fields of application

- Machine tools
- Plastics processing machines
- Special machines
- Presses
- Transfer systems

Technology functions

- Sequence programming
- Positioning
- Pressure/force control
- Differential pressure control
- Synchronization
- Curves
- Cams

Hydraulic axes

- Measurement system:
- Incremental or absolute (SSI)
- Analog 0 to $\pm 10 \mathrm{~V}$ and 4 to 20 mA
- Actuating variable output voltage or current
- Freely configurable controller variants
- Position/pressure/force/velocity controller
- Path-dependent braking
- Substitutional closed-loop control (position/force)
- Synchronization control of up to 4 axes also in groups

Programming

- User programming using a PC
- NC language with subroutine technology and conditional jumps
- 1 NC program per axis for functional sequences
- 1 axes-spanning auxiliary routine
- Variable setting of the NC processing velocity
- Variable setting of the controller scan times
- Password protection

Operation

- Comfortable administration of the machine and measuring data on a PC

Service interface

- RS 232
- TCP/IP (not available with Version Compact)

Process connection

- Digital inputs and outputs,
- Analog inputs and outputs,
- PROFIBUS DP, PROFIBUS DP in Motorola format, CANopen for the communication with a superior control (for CANopen, there is no standard EDS file available)
- PROFINET RT
- EtherNet/IP

Assembly

- Top hat rail 35 mm

CE conformity

- CE conformity according to EMC directive 2004/108/EC and EMVG (Act on electro-magnetic compatibility of operating media) from February 26, 2008
Applied harmonized standards:
EN 61000-6-2:2005
EN 61000-6-3:2007

More information

www.boschrexroth.com/hnc100

Ordering code

${ }^{1)}$ Only specify "EO" if the Ethernet service interface is desired

- X2A (Type Phoenix Micro Combicon 8-pole or HD-SUB 15pole),
- X8M (Type Phoenix Micro Combicon 8-pole or HD-SUB 15-pole)
for "PROFIBUS DP"
${ }^{2)}$ Versions without bus connection are not available

Recommended accessories (can be ordered separately)

Description	Material number
Interface cable RS232 (1:1), length 3 m	R900776897
USB-RS232 converter	R901066684
Cable set VT17220-1X/HNC100-3X, length 2 m, for analog signals (connection X2A) or digital position measurement systems (connec- tion X8M) with HD connector and open breakout cable for: VT-HNC100-1-3X, VT-HNC100-2-3X, VT-HNC100-3-3X, VT-HNC100-4-3X	R901189300
Cable set VT17220-1X/HNC100-3X length 2 m, for analog signals (connection X2A) or digital position measurement systems (connec- tion X8M) with FK-MC connector and open breakout cable for VT-HNC100-C-3X	R901189302
Plug-in connector type 6ES7972-0BA42-0XA0 for PROFIBUS DP	R901312863

Software project planning

Project planning

Developing application-specific data sets forms the basis for the function of the VT-HNC100_..3X. These data sets are generated on the PC and sent to VT-HNC100...3X. The connection of user program and data sets is called project. This software project planning is implemented according to fix steps:

1. The tasks of the VT-HNC100...3X are defined and recorded in a flow chart. In this connection, the meaning of the inputs and outputs and the used parameters is defined.
2. The functions of the flow chart are implemented in a series of NC commands.
3. The machine data (selection of transducers and controllers) and the parameters of the NC program are defined.
4. The data is sent to the VT-HNC100...3X.

5 . The setting and the program sequence are optimized at the machine.
For detailed information on the generation of a project please refer to the document "First steps".

PC programs "WIN-PED 7" and "WIN-PED 6"

For the implementation of the project planning tasks, two WIN-PED programs are available to the user.
WIN-PED 7 is suitable for all HNC variants mentioned in this document except for CANopen.
WIN-PED 6 is suitable for all HNC variants mentioned in this document except for the options PROFINET RT, EtherNet/IP and PROFIBUS DP with TCP/IP.
Projects generated with WIN-PED 6 are not compatible with WIN-PED 7 and vice-versa.

Scope of delivery for WIN-PED:

- Comfortable dialog functions for setting the machine data online or offline
- NC editor with integrated syntax test and program compiler
- Support for the definition of the parameters used in the NC program
- Dialog window for setting the parameter values online
- Comprehensive options for displaying process variables, digital inputs, outputs, and markers
- Recording and graphical presentation of up to 16 process variables with great selection of trigger options
- Dialog for the graphical definition of special functions (determination of the function via polygonal sequence)
- Bus manager for the configuration of data exchange (PROFIBUS DP, PROFINET RT, EtherNet/IP) with superior control

System requirements:

- IBM PC or compatible system
- Windows XP or Windows 7 for WIN-PED 6
- Windows XP or Windows 7 for WIN-PED 7
- Random access memory (512 MB recommended)
- 100 MB free hard disk capacity as per control type
- RS 232 interface for the connection of VT-HNC100...3X, for the PROFINET RT, EtherNet/IP or PROFIBUS DP, also the network interface TCP/IP can be used

Note:

The WIN-PED 6/WIN-PED 7 is not included in the scope of delivery. It can be downloaded from the Internet free of charge, or ordered as CD, Material number R900725471. Download in the Internet: www.boschrexroth.com/hnc100 Inquiries: support.nc-systems@boschrexroth.de

Overview of the controller functions

Position controller:

- PDT1 controller
- Linear amplification characteristic curve
- Direction-dependent gain adaptation
- Gain modification via the NC program possible
- Adaptation of the valve characteristic curve
- Fine positioning
- Residual voltage principle
- Compensation of zero point errors
- State feedback via
- Pressure,
- Pressure differential
- Position
- Command value provision
- Limitation of the actuating variable via the NC program
- "Path-dependent braking"
- Intermediate electronics when using commercially available NC controls
- Synchronization control

Pressure/force controller:

- PIDT1 controller
- I component switchable via window
- Pressure differential analysis
- Own scan time

Velocity controller:

- PI controller
- I component switchable via window

Synchronization controller (up to 4 axes):

- Master-slave principle
- Mean principle

Monitoring functions:

- Dynamic tracking error monitoring
- Traversing range limits (electronic limit switches)
- Cable break monitoring for incremental and SSI encoder
- Cable break monitoring for sensors with output 4 to 20 mA

System overview (example)

System overview, interfaces (example)

Technical data VT-HNC100-C-3X (Compact)

\begin{tabular}{|c|c|c|}
\hline Operating voltage \({ }^{1)}\) \& \(U_{B}\) \& 18 to 30 VDC, residual ripple < \(1.5 \mathrm{~V}_{\text {pp }}\) \\
\hline Current consumption at 24 VDC \& I \& approx. 500 mA \\
\hline Processor \& \& 32 bit power PC \\
\hline Interface for WIN-PED 6, WIN-PED 7 Bus interface \& \& \begin{tabular}{l}
RS232 \\
PROFIBUS DP (max. 12 MBaud according to IEC 61158), CANopen
\end{tabular} \\
\hline \begin{tabular}{l}
Analog inputs (AI): \\
- Voltage input (reference to AGND - Analog ground) \\
- Channel number \\
- Input voltage \\
- Input resistance \\
- Resolution \\
- Non-linearity \\
- Calibration tolerance \({ }^{2)}\) \\
- Current inputs \\
- Channel number \\
- Input current \\
- Input resistance \\
- Leakage current \\
- Resolution \\
- Voltage supply for analog sensors via the VT-HNC100-C-3X
\end{tabular} \& \(U_{E}\)
\(R_{E}\)

I_{E}
R_{E}
I_{V}

U \& ```
1
max +12 V to -12 V (+10 V to -10 V measurable)
200 k\Omega }\pm5
5 mV
< 0.2 %
max. 40 mV (with factory settings)
2
4 mA to 20 mA
225\Omega at 20 }\mp@subsup{}{}{\circ}\textrm{C}(100\Omega\mathrm{ measuring resistance)
0.1 to 0.4% (at 100 \Omega between pin 2 or pin 3 (Cin1+ or
Cin2+) and "AGND"
5 A
UB

``` \\
\hline \begin{tabular}{l}
Analog outputs (AO): \\
- Voltage outputs \\
- Channel number \\
- Output voltage \\
- Output current \\
- Load \\
- Resolution \\
- Non-linearity \\
- In the range -9.5 V to +9.5 V \\
- In the range -10 V to -9.5 V and +9.5 V to +10 V
\end{tabular} & \[
\begin{gathered}
U_{\text {nom }} \\
I_{\text {max }} \\
R_{\text {min }}
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (max. }-10.7 \mathrm{~V} \text { to }+10.7 \mathrm{~V}) \\
& \pm 10 \mathrm{~mA} \\
& 1 \mathrm{k} \Omega \\
& 1.25 \mathrm{mV} \\
& \\
& <0,1 \% \\
& <0,2 \%
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{\text {1) }}\) If a 24 V transducer supply is implemented directly via the VT-HNC100...3X (supply voltage is looped in), the transducer specification has to be observed.
\({ }^{2)}\) If the factory settings are insufficient, the measurement technology can be calibrated on site via software in a system-specific way.

\section*{Technical data VT-HNC100-C-3X (Compact) continued}


\section*{Note:}

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see data sheet 30139-U.

\section*{Technical data VT-HNC100-...-3X (CPU + axis electronics)}
\begin{tabular}{|c|c|c|}
\hline Operating voltage \({ }^{1)}\) & \(U_{B}\) & 18 to 30 VDC , residual ripple \(<1.5 \mathrm{~V}_{\mathrm{pp}}\) \\
\hline Current consumption at 24 VDC & & 1 to 4 A (depending on the HNC variant and the additionally supplied components) \\
\hline Processor & & 32 bit power PC \\
\hline \begin{tabular}{l}
Interface for WIN-PED 6 interface for WIN-PED 7 \\
Bus interface
\end{tabular} & & \begin{tabular}{l}
RS232 \\
RS232, optional TCP/IP \\
PROFIBUS DP (max. 12 MBaud according to IEC 61158), CANopen, PROFINET RT, EtherNet/IP
\end{tabular} \\
\hline \begin{tabular}{l}
PROFINET RT, EtherNet/IP \\
- Minimum cycle time \\
- Max. size of the cyclic I/O data \\
- Transmission rate
\end{tabular} & & \begin{tabular}{l}
2 ms \\
992 byte (max. 496496 byte per direction) \\
100 Mbit/s, full-duplex
\end{tabular} \\
\hline \begin{tabular}{l}
Analog inputs (AI) per axis electronics: \\
- Voltage inputs (differential inputs) \\
- Channel number \\
- Input voltage \\
- Input resistance \\
- Resolution \\
- Non-linearity \\
- Calibration tolerance \({ }^{2)}\) \\
- Current inputs \\
- Channel number \\
- Input current \\
- Input resistance \\
- Leakage current \\
- Resolution \\
- Voltage supply for analog sensors via the VT-HNC100...3X
\end{tabular} & \(U_{E}\)
\(R_{E}\)




\(I_{E}\)
\(R_{E}\)
\(I_{V}\)

\(U\) & \[
\begin{aligned}
& 2 \\
& \max +12 \mathrm{~V} \text { to }-12 \mathrm{~V} \text { (+10 V to -10 V measurable) } \\
& 200 \mathrm{k} \Omega \pm 5 \% \\
& 5 \mathrm{mV} \\
& <0.2 \% \\
& \max .40 \mathrm{mV} \text { (with factory settings) } \\
& 2 \\
& 4 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\
& 350 \Omega \text { at } 20^{\circ} \mathrm{C}(100 \Omega \text { measuring resistance) } \\
& 0.1 \text { to } 0.4 \% \\
& 5 \mu \mathrm{~A} \\
& U_{\mathrm{B}} \text { at X2A1 to X2A4, Pin } 14 \text { (+24 Vsens) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Analog outputs (AO) per axis electronics: \({ }^{3)}\) \\
- Non-linearity \\
- In the range -9.5 V to +9.5 V \\
- In the range -10 V to -9.5 V and +9.5 V to +10 V \\
- Voltage output \\
- Output voltage \\
- Output current \\
- Load \\
- Residual ripple \\
- Resolution \\
- Current output \\
- Output current \\
Standardized \\
- Load \\
- Resolution
\end{tabular} & \[
\begin{gathered}
U_{\text {nom }} \\
I_{\text {max }} \\
R_{\text {min }} \\
\\
I_{\text {nom }} \\
R_{\text {max }}
\end{gathered}
\] & \[
\begin{aligned}
& 2(1) \\
& <0.1 \% \\
& <0.2 \% \\
& \\
& -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (max. }-10.7 \mathrm{~V} \text { to }+10.7 \mathrm{~V} \text { ) } \\
& \pm 10 \mathrm{~mA} \\
& 1 \mathrm{k} \Omega \\
& \pm 60 \mathrm{mV} \text { (without noise) } \\
& 1.25 \mathrm{mV} \\
& \\
& 4 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\
& 500 \Omega \\
& 0,625 \mu \mathrm{~A}
\end{aligned}
\] \\
\hline
\end{tabular}
\({ }^{1)}\) If a 24 V transducer supply is implemented directly via the VT-HNC100...3X (supply voltage is looped in), the transducer specification has to be observed.
2) If the factory settings are insufficient, the measurement technology can be calibrated on site via software in a system-specific way.
\({ }^{3)}\) Configurable as current or voltage output.
Axis electronics slot 1 and axis electronics slot 2 have two voltage outputs Vout1 and Vout2. The axis electronics slot 3 and slot 4 only have one voltage output Vout1.

\section*{Technical data VT-HNC100-...-3X (CPU + axis electronics), continued}


Further technical details upon request.

\footnotetext{
\({ }^{\text {1) }}\) Maximally, 20 digital outputs can be connected
}

\section*{Note:}

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see data sheet 30139-U.
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X8M } \\
\hline Pin & \\
\hline 8 & shield \\
\hline 7 & 24 Venc \\
\hline 6 & +5 V \\
\hline 5 & - Clk \\
\hline 4 & + Clk \\
\hline 3 & - Data \\
\hline 2 & + Data \\
\hline 1 & EGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X2D DIO (digital) } \\
\hline Pin & \\
\hline 8 & shield \\
\hline 7 & OUT2 \\
\hline 6 & OUT1 \\
\hline 5 & IN4 \\
\hline 4 & IN3 \\
\hline 3 & IN2 \\
\hline 2 & IN1 \\
\hline 1 & DGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X2A AIO (analog) } \\
\hline Pin & \\
\hline 8 & shield \\
\hline 7 & 24 Vsens \\
\hline 6 & Vout1 + \\
\hline 5 & Vout2 + \\
\hline 4 & Vin1 \\
\hline 3 & Cin \(2+\) \\
\hline 2 & Cin \(1+\) \\
\hline 1 & AGND \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X1S } \\
\hline Pin & Power \\
\hline 1 & GND \\
\hline 2 & GND \\
\hline 3 & \(18-30 \mathrm{~V}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7P PROFIBUS DP } \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline Pin & CANopen \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}

\section*{Note:}

The pins marked with "reserved" are reserved and must not be wired.

Pinout VT-HNC100-1-3X/... (1-axis version)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X3C } \\
\hline Pin & \\
\hline 1 & \\
\hline 2 & TxD232 \\
\hline 3 & RxD \\
\hline 4 & reserved \\
\hline 5 & GND \\
\hline 6 & reserved \\
\hline 7 & reserved \\
\hline 8 & reserved \\
\hline 9 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Slot 1 X8M1} & \multicolumn{2}{|c|}{Encoder} \\
\hline & Incremental & SSI \\
\hline Pin 1 & - B (Inc) & \\
\hline 2 & & + CLK (SSI) \\
\hline 3 & + R (Inc) & \\
\hline 4 & -R (Inc) & \\
\hline 5 & + A (lnc) & \\
\hline 6 & - A (Inc) & \\
\hline 7 & & - CLK (SSI) \\
\hline 8 & + B (lnc) & \\
\hline 9 & & - Data (SSI) \\
\hline 10 & & \\
\hline 11 & & + Data (SSI) \\
\hline 12 & & enc \\
\hline 13 & & Vref \\
\hline 14 & & enc \\
\hline 15 & res & ved \\
\hline
\end{tabular}
\begin{tabular}{|c|}
\hline X7E1, X7E2 \\
\hline \begin{tabular}{c} 
Ethernet \\
connection
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7P PROFIBUS DP } \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline Pin & CANopen \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline Slot 1 X2D1 & \begin{tabular}{c} 
DIO \\
(digital)
\end{tabular} \\
\hline Pin 1 & I/O 1 \\
\hline 2 & I/O 2 \\
\hline 3 & I/O 3 \\
\hline 4 & I/O 4 \\
\hline 5 & I/O 5 \\
\hline 6 & I/O 6 \\
\hline 7 & I/O 7 \\
\hline 8 & I/O 8 \\
\hline 9 & I/O 9 \\
\hline 10 & I/O 10 \\
\hline 11 & I/O 11 \\
\hline 12 & DGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ Slot 1 X2A1 } \\
\hline Pin \begin{tabular}{c} 
AIO \\
(analog)
\end{tabular} \\
\hline 1 & Vin1 + \\
\hline 2 & Vin1 - \\
\hline 3 & Vin2 + \\
\hline 4 & Vin2 - \\
\hline 5 & Cin1 + \\
\hline 6 & Cin1 - \\
\hline 7 & Cin2 + \\
\hline 8 & Cin2 - \\
\hline 9 & reserved \\
\hline 10 & AGND \\
\hline 11 & Vout1 + \\
\hline 12 & Vout2 + \\
\hline 13 & Cout1 \\
\hline 14 & +24 Vsens \\
\hline 15 & reserved \\
\hline
\end{tabular}

\section*{Note:}

The pins marked with "reserved" are reserved and must not be wired.

Pinout VT-HNC100-2-3X/... (2-axis version)
\begin{tabular}{|c|c|c|c|c|}
\hline X3C & RS232 & \multirow[t]{3}{*}{Slot 1 X8M1 Slot 2 X8M2} & \multicolumn{2}{|c|}{\multirow[t]{2}{*}{Encoder}} \\
\hline Pin & & & & \\
\hline 1 & & & Incremental & SSI \\
\hline 2 & TxD & Pin 1 & - B (Inc) & \\
\hline 3 & RxD & 2 & & + CLK (SSI) \\
\hline 4 & reserved & 3 & + R (Inc) & \\
\hline 5 & GND & 4 & -R (Inc) & \\
\hline 6 & reserved & 5 & + A (Inc) & \\
\hline 7 & reserved & 6 & - A (Inc) & \\
\hline 8 & reserved & 7 & & - CLK (SSI) \\
\hline 9 & & 8 & + B (Inc) & \\
\hline & & 9 & & - Data (SSI) \\
\hline & & 10 & & \\
\hline X1S & Power & 11 & & + Data (SSI) \\
\hline Pin & & 12 & +5 & enc \\
\hline 1 & GND & 13 & +10 & Vref \\
\hline 2 & GND & 14 & +24 & enc \\
\hline 3 & 18-30 V & 15 & res & ved \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
Slot 1 X2D1 \\
Slot 2 X2D2
\end{tabular}}
\end{tabular} \begin{tabular}{c} 
DIO 1) \\
(digital)
\end{tabular}\(|\)\begin{tabular}{|c|c|}
\hline Pin 1 & I/O 1 \\
\hline 2 & I/O 2 \\
\hline 3 & I/O 3 \\
\hline 4 & I/O 4 \\
\hline 5 & I/O 5 \\
\hline 6 & I/O 6 \\
\hline 7 & I/O 7 \\
\hline 8 & I/O 8 \\
\hline 9 & I/O 9 \\
\hline 10 & I/O 10 \\
\hline 11 & I/O 11 \\
\hline 12 & DGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
Slot 1 X2A1 \\
Slot 2 X2A2
\end{tabular}} \\
\hline Pin \begin{tabular}{c} 
AIO \\
(analog)
\end{tabular} \\
\hline 1 & Vin1 + \\
\hline 2 & Vin1 - \\
\hline 3 & Vin2 + \\
\hline 4 & Vin2 - \\
\hline 5 & Cin1 + \\
\hline 6 & Cin1 - \\
\hline 7 & Cin2 + \\
\hline 8 & Cin2 - \\
\hline 9 & reserved \\
\hline 10 & AGND \\
\hline 11 & Vout1 + \\
\hline 12 & Vout2 + \\
\hline 13 & Cout1 \\
\hline 14 & +24 Vsens \\
\hline 15 & reserved \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Maximally, 20 digital outputs can be connected.
}

\section*{Note:}

The pins marked with "reserved" are reserved and must not be wired.

Pinout VT-HNC100-3-3X/... (3-axis version)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X3C } \\
\hline Rin & \\
\hline 1 & \\
\hline 2 & TxD \\
\hline 3 & RxD \\
\hline 4 & reserved \\
\hline 5 & GND \\
\hline 6 & reserved \\
\hline 7 & reserved \\
\hline 8 & reserved \\
\hline 9 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
Slot 1 X8M1 \\
Slot 2 X8M2 \\
Slot 3 X8M3
\end{tabular}} & \multicolumn{2}{|c|}{Encoder} \\
\hline & Incremental & SSI \\
\hline Pin 1 & - B (Inc) & \\
\hline 2 & & + CLK (SSI) \\
\hline 3 & + R (Inc) & \\
\hline 4 & -R (Inc) & \\
\hline 5 & + A (lnc) & \\
\hline 6 & - A (Inc) & \\
\hline 7 & & - CLK (SSI) \\
\hline 8 & + B (lnc) & \\
\hline 9 & & - Data (SSI) \\
\hline 10 & & ND \\
\hline 11 & & + Data (SSI) \\
\hline 12 & & enc \\
\hline 13 & & Vref \\
\hline 14 & & enc \\
\hline 15 & Res & rved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7E1, X7E2 } \\
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
Ethernet \\
connection
\end{tabular}} \\
\begin{tabular}{|c|c|}
\hline X7P PROFIBUS DP \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\end{tabular}\(>.\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
\(\qquad\)


\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{\begin{tabular}{l} 
Slot 1 X2D1 \\
Slot 2 X2D2 \\
Slot 3 X2D3
\end{tabular}} \\
\hline Pin \begin{tabular}{c} 
DIO 1) \\
(digital)
\end{tabular} \\
\hline 1 & I/O 1 \\
\hline 2 & I/O 2 \\
\hline 3 & I/O 3 \\
\hline 4 & I/O 4 \\
\hline 5 & I/O 5 \\
\hline 6 & I/O 6 \\
\hline 7 & I/O 7 \\
\hline 8 & I/O 8 \\
\hline 9 & I/O 9 \\
\hline 10 & I/O 10 \\
\hline 11 & I/O 11 \\
\hline 12 & DGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Maximally, 20 digital outputs can be connected.
\({ }^{2)}\) Not available with slot 3 (reserved)
}

\section*{Note:}

The pins marked with "reserved" are reserved and must not be wired.

Pinout VT-HNC100-4-3X/... (4-axis version)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline X3C & RS232 & \multirow[t]{5}{*}{\[
\begin{aligned}
& \text { Slot } 1 \text { X8M1 } \\
& \text { Slot } 2 \text { X8M2 } \\
& \text { Slot } 3 \text { X8M3 } \\
& \text { Slot } 4 \text { X8M4 }
\end{aligned}
\]} & \multicolumn{2}{|c|}{\multirow[t]{4}{*}{Encoder}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{lc}
\hline Slot 1 X2D1 & DIO \(^{1)}\) \\
Slot 2 X2D2 & (digital) \\
Slot 3 X2D3 & \\
Slot 4 X2D4 &
\end{tabular}}} & \multicolumn{2}{|l|}{\multirow[t]{4}{*}{\begin{tabular}{lr} 
Slot 1 X2A1 & AIO \\
Slot 2 X2A2 & (analog) \\
Slot 3 X2A3 & \\
Slot 4 X2A4 &
\end{tabular}}} \\
\hline Pin & & & & & & & & \\
\hline 1 & & & & & & & & \\
\hline 2 & TxD & & & & & & & \\
\hline 3 & RxD & & Incremental & SSI & Pin 1 & I/O 1 & Pin 1 & Vin1 + \\
\hline 4 & reserved & Pin 1 & - B (Inc) & & 2 & I/O 2 & 2 & Vin1 - \\
\hline 5 & GND & 2 & & + CLK (SSI) & 3 & I/O 3 & 3 & Vin2 + \\
\hline 6 & reserved & 3 & + R (lnc) & & 4 & I/O 4 & 4 & Vin2 - \\
\hline 7 & reserved & 4 & -R (lnc) & & 5 & I/O 5 & 5 & Cin1 + \\
\hline 8 & reserved & 5 & + A (lnc) & & 6 & I/O 6 & 6 & Cin1 - \\
\hline 9 & & 6 & - A (Inc) & & 7 & I/O 7 & 7 & Cin2 + \\
\hline & & 7 & & - CLK (SSI) & 8 & I/O 8 & 8 & Cin2 - \\
\hline & & 8 & + B (lnc) & & 9 & I/O 9 & 9 & reserved \\
\hline & & 9 & & - Data (SSI) & 10 & I/O 10 & 10 & AGND \\
\hline & & 10 & & & 11 & I/O 11 & 11 & Vout1 + \\
\hline X1S & Power & 11 & & + Data (SSI) & 12 & DGND & 12 & Vout2 + \({ }^{2}\) \\
\hline Pin & & 12 & & enc & & & 13 & Cout1 \\
\hline 1 & GND & 13 & +10 & Vref & & & 14 & +24 Vsens \\
\hline 2 & GND & 14 & +24 & enc & & & 15 & reserved \\
\hline 3 & 18-30 V & 15 & res & ved & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7E1, X7E2 } \\
\hline \multicolumn{2}{|c|}{\begin{tabular}{c} 
Ethernet \\
connection
\end{tabular}} \\
\hline \\
\begin{tabular}{|c|c|}
\hline X7P PROFIBUS DP \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\end{tabular}\(>.\)\begin{tabular}{l} 
\\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline CANopen \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline  &  &  &  &  &  \\
\hline & & & & & HNC100 \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Maximally, 20 digital outputs can be connected.
\({ }^{2}\) ) Not available with slot 3 and slot 4 (reserved)
}

\section*{Note:}

The pins marked with "reserved" are reserved and must not be wired.

Installation on top hat rail TH 35-7.5 or TH 35-15 according to EN 60715


Unit dimensions of all axis versions (dimensions in mm)


\section*{Project Planning / Maintenance Instructions / Additional Information}

\section*{Product documentation for VT-HNC100...3X}

\section*{Product information 09956}

\section*{Data sheet 30139}

Operating instructions 30139-B

Declaration on environmental compatibility 30139-U

WIN-PED 6 / WIN-PED 7
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{First steps} \\
\hline \multicolumn{2}{|l|}{Online help} \\
\hline & Machine data \\
\hline & NC commands \\
\hline & Parameter \\
\hline & CANopen (only with WIN-PED 6) \\
\hline & PROFIBUS DP (PROFIBUS DP with TCP/IP only with WIN-PED 7) \\
\hline & PROFINET RT (only with WIN-PED 7) \\
\hline & EtherNet/IP (only with WIN-PED 7) \\
\hline
\end{tabular}

General Information on the maintenance and commissioning of hydraulic components 07800 / 07900

Commissioning software and documentation on the Internet: www.boschrexroth.com/HNC100

Maintenance instructions:
- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. The repaired units will be supplied with default settings. User-specific settings are not maintained. The operator will have to re-transfer the corresponding user parameters and programs.

Notes:
- Electric signals taken out via control electronics (e.g. signal "No error") may not be used for the actuation of safety-relevant machine functions. (See also the European standard "Safety requirements for fluid power systems and their components Hydraulics", EN 982.)
- If electromagnetic interference must be expected, take appropriate measures to safeguard the function (depending on the application, e.g. screening, filtration).
- Wiring information
- Largest spatial separation of signal and load lines possible
- Don't lead signal lines through magnetic fields
- If possibly, lay signal lines without intermediate terminals.
- Don't lay signal lines parallely to load lines
- For more information refer to the WIN-PED 6 and WIN-PED 7 online help and the 30139-B operating instructions
- The upper and lower ventilation slots must not be concealed by adjacent units in order to provide for sufficient cooling.

Notes

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Digital drive controller for hydraulic axes with sercos interface}

- Component series \(3 X\)

\section*{Contents}
Features ..... 2
Ordering code ..... 3
Software project planning ..... 4
Overview of the controller functions ..... 4
System overview ..... 5
System overview, interfaces ..... 6
Technical data ..... 7
Pin assignment ..... 12
Unit dimensions ..... 13Project planning / maintenance instructions /additional information14

\section*{Features}

The VT-HNC100...3X/S digital drive controller complies with the specific requirements for closed-loop control of hydraulic linear drives.
It is designed for being used in rough industrial environments as regards interference immunity, mechanical vibration, shock, and climate resistance.

\section*{Areas of application}
- Machine tools
- Bending machines

\section*{Technology functions}
- Positioning
- Velocity controller:
- Controlled
- Regulated
- Force controller
- Substitutional closed-loop control
- Moving without following error
- Quadrant error correction

\section*{Hydraulic axes}
- Measurement system:
- Incremental TTL 5V
- SSI transducer
- EnDat 2.2
- Analog 0 to \(\pm 10 \mathrm{~V}\)
- Actuating variable output voltage or current
- Freely configurable controller variants
- Position / force / velocity controller
- Substitutional closed-loop control (position/force)

\section*{Programming}
- Via the control with IndraWorks

\section*{Operation}
- IndraWorks

\section*{Process connection}
- Digital inputs and outputs,
- Analog inputs and outputs,
- sercos II or sercos III to communicate with a superior control system

\section*{Assembly}
- Top hat rail 35 mm

\section*{CE conformity}
- CE conformity according to EMC Directive 2004/108/EC and EMVG (Act on electromagnetic compatibility of operating media) from February 26, 2008 Harmonized standards used:
EN 61000-6-2:2005
EN 61000-6-3:2007

\section*{More information}
www.boschrexroth.com/hnc100

Ordering code

\begin{tabular}{|l|l|l|}
\hline 01 & Serial unit & VT-HNC100 \\
\hline \multirow{3}{*}{02} & Versions for an hydraulic axis & \\
\cline { 2 - 4 } & Compact & C \\
\cline { 2 - 3 } & Standard & \(\mathbf{1}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 03 & Component series 30 to 39 (30 to 39: Unchanged technical data and pin assignment) & \(\mathbf{3 X}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline \multirow{2}{*}{04} & Bus connection & \\
\cline { 2 - 4 } & sercos II / sercos III 1) & \(\mathbf{s}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 05 & Position transducer & I \\
\cline { 2 - 4 } & Incremental/EnDat 2.2/SSI (standard) \({ }^{2)}\) & \(\mathbf{S}\) \\
\cline { 2 - 4 } & EnDat 2.2/SSI (only in connection with Compact version) \({ }^{2)}\) & \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 06 & sercos II (only in connection with Compact version) & \(\mathbf{0 0}\) \\
\cline { 2 - 3 } & sercos III (only in connection with Standard version) & \(\mathbf{3 0}\) \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|}
\hline 07 & Option & E \\
\cline { 2 - 4 } & Without & \(\mathbf{0 0 0}\) \\
\hline
\end{tabular}
\begin{tabular}{l|l}
\hline \multicolumn{2}{l}{ Available variants } \\
\hline Type & Material number \\
\hline VT-HNC100-C-3X/S-S-00/000 & R901112919 \\
\hline VT-HNC100-1-3X/S-I-30/000 & R901234133 \\
\hline
\end{tabular}
1) Ethernet service interface only in connection with sercos III
2) Can be selected by means of the IndraWorks PC program

\section*{Included in the scope of delivery:}

Mating connector for
- X1S (type Phoenix Mini Combicon 3-pole),
- X2D (type Phoenix Micro Combicon 8-pole and/or Phoenix Mini Combicon 12-pole),
- X2A (type Phoenix Micro Combicon 8-pole and/or HD-SUB 15-pole),
- X8M (type Phoenix Micro Combicon 8-pole and/or HD-SUB 15-pole)

Recommended accessories (can be ordered separately)
\begin{tabular}{l|l}
\hline Denomination & Material number \\
\hline Interface cable RS232, length 3 m & R900776897 \\
\hline USB RS232 converter & R901066684 \\
\hline \begin{tabular}{l} 
Cable set VT17220-1X/HNC100-3X, length 2 m, \\
for analog signals (connection X2A) or digital position measurement systems (connection X8M) with \\
HD connector and open breakout cable for VT-HNC100-1-3X
\end{tabular} & R901189300 \\
\hline \begin{tabular}{l} 
Cable set VT17220-1X/HNC100-3X length 2 m, \\
for analog signals (connection X2A) or digital position measurement systems (connection X8M) with \\
FK-MC connector and open breakout cable for VT-HNC100-C-3X
\end{tabular} & R901189302 \\
\hline
\end{tabular}

\section*{Software project planning}

\section*{Project planning}

Developing application-specific data sets forms the basis for the function of the VT-HNC100...3X/S. These data sets are generated on the PC and sent to the VT-HNC100...3X/S using a serial Ethernet interface. This software parameterization is implemented according to fix steps:
1. Depending on the assignment, the inputs and outputs and the parameters used are defined.
2. The parameters (selection of transducers and controllers) are defined.
3. The data are sent to the VT-HNC100...3X/S.
4. The settings are optimized at the machine.

\section*{PC program "IndraWorks"}

To implement the project planning tasks, the "IndraWorks" PC program is available to the user. It serves for parameterizing, setting, and diagnosing the VT-HNC100...3X/S.

\section*{Scope of service:}
- Comfortable dialog functions for setting the parameters online or offline
- Dialog window for the online setting of the parameter values
- Various options for the display of the process variables

\section*{Notice:}

The PC program "IndraWorks" is not covered by the scope of delivery.
Queries: support.nc-systems@boschrexroth.de

\section*{Overview of the controller functions}

\section*{Position controller:}
- PDT1 controller
- Linear amplification characteristic curve
- Direction-dependant gain adjustment
- Adaptation of the valve characteristic curve
- Valve characteristic diagram
- Fine positioning
- Residual voltage principle
- Compensation of zero point errors
- State feedback via:
- Force,
- Position
- Command value feedforward

\section*{Force controller:}
- PIDT1 controller
- I share switchable via window
- Differential pressure evaluation
- Additive velocity addition

\section*{Velocity controller:}
- PI controller
- I share switchable via window

\section*{Monitoring functions:}
- Dynamic following error monitoring
- Traversing range limits (electronic end switches)
- Cable break monitoring for position transducers
- Cable break monitoring for sensors with output 4 to 20 mA

\section*{System overview}


\section*{System overview, interfaces}

\section*{Superior control system}

Possible interfaces with the VT-HNC100...3X/S:
- Analog signals
- Digital inputs/outputs
- Serial interface
- Bus systems (sercos II or sercos III)


\section*{Example of sercos II:}

VT-HNC100-C-3X/S with one hydraulic cylinder axis

Technical data VT-HNC100-C-3X/S (Compact)
\begin{tabular}{|c|c|c|}
\hline Operating voltage \({ }^{1)}\) & \(U_{B}\) & 18 to 30 VDC \\
\hline Current consumption at 24 VDC & & Approx. 200 mA (observe additional current consumption for connected sensors/actuators) \\
\hline Processor & & 32 bit power PC \\
\hline Analog inputs (AI): & & \\
\hline - Voltage input (reference to AGND - Analog ground) & & \\
\hline - Channel number & & 1 \\
\hline - Input voltage & \(U_{E}\) & Max. +12 V to -12 V ( +10 V to -10 V measurable) \\
\hline - Input resistance & \(R_{\text {E }}\) & \(200 \mathrm{k} \Omega \pm 5 \%\) \\
\hline - Resolution & & 5 mV \\
\hline - Non-linearity & & < 0.2 \% \\
\hline - Calibration tolerance \({ }^{2)}\) & & Max. 40 mV (with factory settings) \\
\hline - Current inputs & & \\
\hline - Channel number & & 2 \\
\hline - Input current & \(I_{\text {E }}\) & 4 mA to 20 mA \\
\hline - Leakage current & IV & 0.1 to \(0.4 \%\) (with \(100 \Omega\) between pin 2 and/or pin 3 ( Cin1+ and/or Cin2+) and "AGND" \\
\hline - Resolution & & \[
5 \mu \mathrm{~A}
\] \\
\hline - Voltage supply for analog sensors via the VT-HNC100-C-3X/S & U, I & \(U_{B}\), max. 100 mA at X 2 A, pin \(7(+24 \mathrm{~V}\) sens) \\
\hline Analog outputs (AO): & & \\
\hline - Voltage outputs & & \\
\hline - Channel number & & 2 \\
\hline - Output voltage & \(U_{\text {nom }}\) & -10 V to +10 V (max. -10.7 V to \(+10.7 \mathrm{~V})\) \\
\hline - Output current & \(I_{\text {max }}\) & \(\pm 10 \mathrm{~mA}\) \\
\hline - Load & \(R_{\text {min }}\) & \(1 \mathrm{k} \Omega\) \\
\hline - Resolution & & 1.25 mV \\
\hline - Non-linearity & & \\
\hline - In the range -9.5 V to +9.5 V & & < 0.1 \% \\
\hline - In the range -10 V to -9.5 V and +9.5 V to +10 V & & < 0.2 \% \\
\hline
\end{tabular}
1) If a 24 V transducer supply is implemented directly via the VT-HNC100...3X/S (supply voltage is looped in), the transducer specification has to be observed.
2) If the factory settings are insufficient, the measurement technology can be calibrated on site via software in a system-specific way.

\section*{Technical data VT-HNC100-C-3X/S (Compact) continued}


Further technical details upon request.

\section*{Notice:}

For information on the environment simulation testing for the areas EMC (electro-magnetic compatibility), climate and mechanical load, see data sheet 30139-U.

Technical data VT-HNC100-1-3X/S (1-axis version)
\begin{tabular}{|c|c|c|}
\hline Operating voltage \({ }^{1)}\) & \(U_{B}\) & 18 to 30 VDC \\
\hline Current consumption at 24 VDC & & \begin{tabular}{l}
CPU card approx. 200 mA \\
Per axis approx. 100 mA (observe additional current consumption for connected sensors/actuators)
\end{tabular} \\
\hline Processor & & 32 bit power PC \\
\hline \begin{tabular}{l}
Analog inputs (AI) per axis electronics: \\
- Voltage inputs (differential inputs) \\
- Channel number \\
- Input voltage \\
- Input resistance \\
- Resolution \\
- Non-linearity \\
- Calibration tolerance \({ }^{2)}\) \\
- Current inputs \\
- Channel number \\
- Input current \\
- Leakage current \\
- Resolution \\
- Voltage supply for analog sensors via the VT-HNC100-1-3X/S
\end{tabular} & \begin{tabular}{l}
\[
\begin{aligned}
& U_{\mathrm{E}} \\
& R_{\mathrm{E}}
\end{aligned}
\] \\
\(I_{\mathrm{E}}\) \\
\(I_{V}\) \\
U, I
\end{tabular} & ```
2
Max. +12 V to -12 V (+10 V to -10 V measurable)
200 k\Omega 
5 mV
< 0.2 %
Max. }40\textrm{mV}\mathrm{ (with factory settings)
2
4 mA to 20 mA
0.1 to 0.4 %
5\muA
UB, max. 200 mA at X2A, pin 14 (+24 Vsens)
``` \\
\hline \begin{tabular}{l}
Analog outputs (AO) per axis electronics: \({ }^{3)}\) \\
- Non-linearity \\
- In the range -9.5 V to +9.5 V \\
- In the range -10 V to -9.5 V and +9.5 V to +10 V \\
- Voltage output \\
- Output voltage \\
- Output current \\
- Load \\
- Residual ripple \\
- Resolution \\
- Current output \\
- Output current standardized \\
- Load \\
- Resolution
\end{tabular} & \[
\begin{gathered}
U_{\text {nom }} \\
I_{\text {max }} \\
R_{\min } \\
\\
I_{\text {nom }} \\
R_{\max }
\end{gathered}
\] & \[
\begin{aligned}
& 2 \\
& <0.1 \% \\
& <0.2 \% \\
& -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (max. }-10.7 \mathrm{~V} \text { to }+10.7 \mathrm{~V} \text {) } \\
& \pm 10 \mathrm{~mA} \\
& 1 \mathrm{k} \Omega \\
& \pm 60 \mathrm{mV} \text { (without noise) } \\
& 1.25 \mathrm{mV} \\
& 4 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\
& 500 \Omega \\
& 0.625 \mathrm{\mu A}
\end{aligned}
\] \\
\hline Bus interface & & sercos III \\
\hline \begin{tabular}{l}
Switching inputs (DI) and/or outputs (DO) per axis electronics (adjustable via software) \\
Switching inputs (DI) \\
Switching outputs (DO) \\
Reference potential for all signals
\end{tabular} & \begin{tabular}{l}
Quantity Logic level \\
Connection \\
Logic level \\
Connection
\end{tabular} & \begin{tabular}{l}
11 \\
\(\log 0\) (low) \(\leq 5 \mathrm{~V}\); \(\log 1\) (high) \(\geq 10 \mathrm{~V}\) to \(U_{\mathrm{B}}\), \\
\(I_{\mathrm{e}}=20 \mathrm{~mA}\) with \(U_{\mathrm{B}}=24 \mathrm{~V}\) \\
Flexible conductor up to \(1.5 \mathrm{~mm}^{2}\)
\[
\log 0(\text { low }) \leq 2 \mathrm{~V} ; \log 1(\text { high }) \leq U_{\mathrm{B}} ; I_{\max }=20 \mathrm{~mA} \text {, }
\] \\
maximum load capacity \(\mathrm{C}=0.047 \mu \mathrm{~F}\) \\
Flexible conductor up to \(1.5 \mathrm{~mm}^{2}\) \\
DGND
\end{tabular} \\
\hline
\end{tabular}
1) If a 24 V transducer supply is implemented directly via the VT-HNC100-1-3X/S (supply voltage is looped in), the transducer specification has to be observed.
2) If the factory settings are insufficient, the measurement technology can be calibrated on site via software in a system-specific way.
3) Configurable as current or voltage output.

\section*{Technical data VT-HNC100-...-3X (1-axis version), continued}

Further technical details upon request.

\section*{Notice:}

For information on the environment simulation testing for the areas EMC (electro-magnetic compatibility), climate and mechanical load, see data sheet 30139-U.
1) If the factory settings are insufficient, the measurement technology can be calibrated on site via software in a systemspecific way.

Pin assignment VT-HNC100-C-3X/S... (Compact with sercos II)
\begin{tabular}{|c|c|c|}
\hline X8M & \multicolumn{2}{|c|}{ Encoder } \\
\hline Pin & SSI & EnDat 2.2 \\
\hline 8 & Shield & Shield \\
\hline 7 & 24 Venc & \\
\hline 6 & & +5 V \\
\hline 5 & - Clk & - CIk \\
\hline 4 & + Clk & + Clk \\
\hline 3 & - Data & - Data \\
\hline 2 & + Data & + Data \\
\hline 1 & \multicolumn{2}{|c|}{ EGND } \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline X2D & DIO (Digital) \\
\hline Pin & \\
\hline 8 & Shield \\
\hline 7 & OUT2 \\
\hline 6 & OUT1 \\
\hline 5 & IN 4 \\
\hline 4 & IN 3 \\
\hline 3 & IN 2 \\
\hline 2 & IN 1 \\
\hline 1 & DGND \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline X2A & AIO (Analog) \\
\hline Pin & \\
\hline 8 & Shield \\
\hline 7 & 24 Vsens \\
\hline 6 & Vout1 + \\
\hline 5 & Vout2 + \\
\hline 4 & Vin 1 \\
\hline 3 & Cin2 + \\
\hline 2 & Cin1 + \\
\hline 1 & AGND \\
\hline
\end{tabular}

\begin{tabular}{|c|c|}
\hline X3C & RS232 \\
\hline Pin & \\
\hline 1 & \\
\hline 2 & TxD \\
\hline 3 & RxD \\
\hline 4 & Reserved \\
\hline 5 & GND \\
\hline 6 & Reserved \\
\hline 7 & Reserved \\
\hline 8 & Reserved \\
\hline 9 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline X1S & Power \\
\hline Pin & \\
\hline 1 & GND \\
\hline 2 & GND \\
\hline 3 & \(18-30 \mathrm{~V}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline X7 & sercos II \\
\hline S1 & \(T X\) \\
\hline S2 & \(R X\) \\
\hline
\end{tabular}

\section*{Notice:}

The pins marked with "reserved" are reserved and must not be connected!

Pin assignment VT-HNC100-1-3X/S... (1-axis version with sercos III)

Unit dimensions (dimensions in mm)
vt-HNC100-C-3X/s...
Assembly on top hat rail TH 35-7.5 or TH 35-15 according to EN 60715

VT-HNC100-1-3X/S...
Assembly on top hat rail TH 35-7.5 or TH 35-15 according to EN 60715

RE 30159, edition: 2012-03, Bosch Rexroth AG

\section*{Project planning / maintenance instructions / additional information}

\section*{Product documentation for VT-HNC100...3X/S}

Product information 09956

Data sheet 30159

Operating instructions 30159-B

Functional description 30159-FK

Parameter description 30159-PA

Environmental compatibility statement 30139-U

Commissioning software and documentation on the Internet: www.boschrexroth.com/HNC100

\section*{Maintenance instructions:}
- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. Repaired devices are returned with default settings. User-specific settings are not accepted. The user must transfer all appropriate user parameters and programs again.

\section*{Notices:}
- The VT-HNC100...3X/S does not support rotary drives
- Electric signals taken out via control electronics (e.g. "No error" signal) must not be used for switching safetyrelevant machine functions! (See also the European standard "Safety requirements for fluid power systems and their components - Hydraulics", EN 982.)
- If electro-magnetic interference is to be anticipated, suitable measures must be taken to ensure the function (depending on the application, e.g. shielding, filtration)!
In order to satisfy the requirements of the CE mark, a cable of category 7 (cat. 7 according to ISO/IEC 11801) must be used for the sercos III communication.
- The upper and lower ventilation slots must not be concealed by adjacent units in order to provide for sufficient cooling.

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52/18-0
documentation@boschrexroth.de
www.boschrexroth.de duced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\author{
Rexroth
} control of axial piston units

Component series 3X

Table of contents
Content Page
Features 2
Ordering code 3
Software functionality 4
Overview of the controller functions 4
System overview 5
Block diagram 6
Technical data 7 and 8
Pinout (2-axis version) 9 to 11
Pinout (4-axis version) 12 to 16
Unit dimensions 17
Project planning / Maintenance instructions /Additional information18 and 19

\section*{Features}

The VT-HNC100-SEK digital controller assembly is suitable for the closed-loop speed control, the closed-loop torque control as well as the open-loop torque control of axial piston units Type A4VS..DS1(E) with secondary control.
It comprises interfaces for recording the swivel angle position of individual or tandem units as well as for the speed feedback with incremental encoders. The software contains closed-loop control, open-loop control and monitoring functions especially designed for the secondary control.
- Parameterization and process visualization with commercially available PC via serial interface
- Two modules with monitoring function for analyzing the signals from inductive swivel angle sensors
- Analog differential inputs (voltage or current)
- Up to 2 incremental or SSI inputs with monitoring function for the speed or rotary angle sensing
- 1 analog output \(\pm 10 \mathrm{~V}\) per I/O card (slot 3 and 4)
-2 analog outputs \(\pm 10 \mathrm{~V}\) per LVDT card (slot 1 and 2)
- Digital inputs
- Profibus DP or CANopen for the communication with SPS
- Digital outputs (switching outputs)
- Configurable sequence routine for switch-on/switch-off order with signal output for isolator valve and a brake that might be available
- Monitoring functions with output of error codes for a better diagnosis

\section*{Note regarding the system structure:}

In a secondary unit with servo valve 4WS2EM10 (standard version, see data sheet 92056), you moreover need an amplifier module VT 11021 (see data sheet 29743).

\section*{Assembly}
- Top hat rail 35 mm

Ordering code

\footnotetext{
\({ }^{1)}\) Software functionality according to description on page 4
2) With 2 secondary units, „A" has to be selected; with 4 secondary units, „D" has to be selected.
}

Standard types
\begin{tabular}{l|l}
\hline Type & Material number \\
\hline SYHNC100-SEK-2-3X/C-A-00/S000 & R901293741 \\
\hline SYHNC100-SEK-2-3X/P-A-00/S000 & R901293742 \\
\hline SYHNC100-SEK-4-3X/C-D-00/S000 & R901267896 \\
\hline SYHNC100-SEK-4-3X/P-D-00/S000 & R901278028 \\
\hline
\end{tabular}

\section*{Included within the scope of delivery:}

Mating connector for
- X1S (Type Phoenix Mini Combicon 3-pole)
- X2D (Type Phoenix Mini Combicon 12-pole)
- X2A (Type HD-SUB 15-pole)
- X8M (Type HD-SUB 15-pole)

Recommended accessories (can be ordered separately)
\begin{tabular}{l|l}
\hline Description & Material number \\
\hline Interface cable RS232 (1:1), length 3 m & R900776897 \\
\hline USB-RS232 converter & R901066684 \\
\hline \begin{tabular}{l}
Cable set VT17220-1X/HNC100-3X, length 2m, \\
for analog signals (connection X2A) and digital position measurement systems (connec- \\
tion X8M) with HD connector and open breakout cable for SYHNC100-SEK-3X
\end{tabular} & R901189300 \\
\hline Plug-in connector Type 6ES7972-0BA41-0XA0 for PROFIBUS DP & R900050152 \\
\hline
\end{tabular}

\section*{Software functionality}

\section*{Software functionality}
- Basically, the software contains the closed-loop control types closed-loop speed control, closed-loop torque control and open-loop torque control. It is possible to switch between the closed-loop control types during operation in a shock-free form.
- Adjustable ramp functions for speed and torque command value allow for an adjustment of external command values
- Software-based monitoring functions with parameterizable switching thresholds as well as hardware error messages analyzed by software
- Underlying closed-control loops per LVDT card for two swivel angle controllers
- Sequence program with defined signal sequence for switching a unit on and off
- Configuration, parameterization and diagnosis of an application by means of the WIN-PED PC program
- System-specific software extensions can be prepared upon request

\section*{PC program WIN-PED}

For SYHNC100-SEK, only the version
"WIN-PED 6.6 " is used. It can be downloaded on the Internet from www.boschrexroth.delhnc100.
Related enquiries: support.nc-systems@boschrexroth.de

\section*{System requirements:}
- IBM PC or compatible system
- Windows XP or Windows 7
- Random access memory (512 MB recommended)
- 100 MB free hard disk capacity

\section*{Note:}

The "WIN-PED 6.6" PC program is not included in delivery. It can be downloaded in the Internet free of charge!
Download in the Internet: www.boschrexroth.com/hnc100
Inquiries: support.nc-systems@boschrexroth.de

\section*{Overview of the controller functions}
- Swivel angle controller
- Speed controller
- Closed-loop torque control
- Open-loop torque control

\section*{Monitoring functions:}
- Cable break monitoring for incremental and SSI encoder
- Cable break monitoring for swivel angle transducers
- Acceleration too high
- Overspeed (max. speed)
- Speed difference command / actual
- Swivel angle difference command / actual

\section*{Technical data}
\begin{tabular}{|c|c|c|}
\hline Operating voltage \({ }^{1)}\) & \(U_{B}\) & 18 to 30 VDC , residual ripple \(<1.5 \mathrm{~V}_{\mathrm{pp}}\) \\
\hline Current consumption at 24 VDC & & 1 to 4 A (depending on the HNC variant and the additionally supplied components) \\
\hline Processor & & 32 bit power PC \\
\hline \begin{tabular}{l}
Analog inputs (AI) per axis electronics: \\
- Voltage inputs (differential inputs) \\
- Channel number \\
- Input voltage \\
- Input resistance \\
- Resolution \\
- Non-linearity \\
- Calibration tolerance \\
- Current inputs \\
- Channel number \\
- Input current \\
- Input resistance \\
- Leakage current \\
- Resolution \\
- Voltage supply for analog sensors via SYHNC100-SEK
\end{tabular} & \(U_{\mathrm{E}}\)
\(R_{\mathrm{E}}\)

\(I_{E}\)
\(R_{E}\)
\(I_{\mathrm{V}}\)

\(U\) & \[
\begin{aligned}
& 2 \\
& \max +12 \mathrm{~V} \text { or }-12 \mathrm{~V}(+10 \mathrm{~V} \text { to }-10 \mathrm{~V} \text { measurable) } \\
& 200 \mathrm{k} \Omega \pm 5 \% \\
& 5 \mathrm{mV} \\
& < \pm 0,25 \% \\
& \max .40 \mathrm{mV} \text { (with factory settings) } \\
& \\
& 2 \\
& 4 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\
& 350 \Omega \text { at } 20^{\circ}(100 \Omega \text { measuring resistance) } \\
& 0.1 \text { to } 0.4 \% \\
& 5 \mu \mathrm{~A} \\
& U_{\mathrm{B}} \text { at } \mathrm{X} 2 \mathrm{~A} 1 \text { to X2A4, Pin } 14 \text { (+24 Vsens) }
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Analog outputs (AO) per axis electronics: \\
- with 4 drives \\
- with 2 drives
\end{tabular} & & \begin{tabular}{l}
2 analog outputs each at X2A1 and X2A2 \\
1 analog output each at X2A3 and X2A4 \\
2 analog outputs at X2A1 \\
1 analog output at X2A2
\end{tabular} \\
\hline \begin{tabular}{l}
- Non-linearity \\
- In the range -9.5 V to +9.5 V \\
- In the range -10 V to -9.5 V and +9.5 V to +10 V \\
- Voltage output
\end{tabular} & & \[
\begin{aligned}
& <0.1 \% \\
& <0.2 \%
\end{aligned}
\] \\
\hline \begin{tabular}{l}
- Output voltage \\
- Output current \\
- Load \\
- Residual ripple \\
- Resolution
\end{tabular} & \[
\begin{gathered}
U_{\text {nom }} \\
I_{\text {max }} \\
R_{\text {min }}
\end{gathered}
\] & \[
\begin{aligned}
& -10 \mathrm{~V} \text { to }+10 \mathrm{~V} \text { (max. }-10.7 \mathrm{~V} \text { to }+10.7 \mathrm{~V} \text {) } \\
& \pm 10 \mathrm{~mA} \\
& 1 \mathrm{k} \Omega \\
& \pm 60 \mathrm{mV} \text { (without noise) } \\
& 1.25 \mathrm{mV}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
- Current output \\
- Output current \\
Standardized \\
- Load \\
- Resolution
\end{tabular} & \[
\begin{gathered}
I_{\text {nom }} \\
R_{\max }
\end{gathered}
\] & \[
\begin{array}{|l}
\hline 4 \mathrm{~mA} \text { to } 20 \mathrm{~mA} \\
500 \Omega \\
0.625 \mu \mathrm{~A} \\
\hline
\end{array}
\] \\
\hline
\end{tabular}
\({ }^{1)}\) If a 24 V transducer supply is implemented directly via the SYHNC100-SEK (supply voltage is looped in), the transducer specification has to be observed.

Technical data (continued)
\begin{tabular}{|c|c|}
\hline Interface for WIN-PED 6 & RS232 \\
\hline Bus interface & PROFIBUS DP (max. 12 MBaud according to IEC 61158), CANopen \\
\hline Gate inputs (DI) or outputs (DO) per axis electronics (settable via software) & \(11^{1)}\) \\
\hline Gate inputs (DI) Logic level & \[
\begin{aligned}
& \log 0(\text { low }) \leq 5 \mathrm{~V} ; \log 1 \text { (high }) \geq 10 \mathrm{~V} \text { to } U_{\mathrm{B}}, \\
& I_{\mathrm{e}}=20 \mathrm{~mA} \text { at } U_{\mathrm{B}}=24 \mathrm{~V}
\end{aligned}
\] \\
\hline Port & Flexible conductor up to \(1.5 \mathrm{~mm}^{2}\) \\
\hline Gate outputs (DO) Logic level & \[
\log 0(\text { low }) \leq 2 \mathrm{~V} ; \log 1(\text { high }) \leq U_{\mathrm{B}} ; I_{\max }=20 \mathrm{~mA},
\] Maximum load capacity \(\mathrm{C}=0.047 \mu \mathrm{~F}\) \\
\hline Port & Flexible conductor up to \(1.5 \mathrm{~mm}^{2}\) \\
\hline Reference potential for all signals & DGND \\
\hline Digital position transducers (encoder) per axis electronics: & \\
\hline - Incremental transducer (transducer with TTL output) & \\
\hline - Input voltage \(\quad \log 0\) & 0 to 1 V \\
\hline \(\log 1\) & 2.8 to 5.5 V \\
\hline - Input current \(\quad \log 0\) & -0.8 mA (with 0 V) \\
\hline \(\log 1\) & 0.8 mA (with 5 V) \\
\hline - Max. frequency referring to Ua1 \(f_{\text {max }}\) & 250 kHz \\
\hline - Voltage supply for incremental encoders via the HNC & \(5.25 \mathrm{~V} \pm 1 \%\), max. 400 mA total current across all axes at X 8 M 3 to X 8 M 4 , pin 12 (+5 Venc) \\
\hline - SSI transducer (Due to the higher control quality, an SSI transducer with clock synchronization should be used.) & \\
\hline - Coding & Gray-Code \\
\hline - Data width & Adjustable up to max. 28 Bit \\
\hline - Line receiver / line driver & RS485 \\
\hline - Voltage supply for SSI encoders via SYHNC100-SEK & \(U_{B}\) at X8M3 to X8M4, Pin 14 (+24 Venc) \\
\hline Reference potential for all signals & EGND \\
\hline Reference voltage per axis electronics \(\quad U_{\text {ref }}\) & +10 V \(\pm 25 \mathrm{mV}(20 \mathrm{~mA})\) \\
\hline Dimensions & See page 18 \\
\hline Assembly & Top hat rail TH 35-7.5 or TH 35-15 according to EN 60715 \\
\hline Admissible operating temperature range ৩ & 0 to \(50{ }^{\circ} \mathrm{C}\) \\
\hline Storage temperature range ง & -20 to \(+70{ }^{\circ} \mathrm{C}\) \\
\hline Protection class according to EN 60529:1991 & IP 20 \\
\hline Weight m & 960 g \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Maximally, 20 digital outputs can be connected
}

\section*{Note:}

Information on the environment simulation testing for the areas EMC (electromagnetic compatibility), climate and mechanical load see data sheet 30162-U.

Pinout (2-axis version)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline Pin & CANopen \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7P PROFIBUS DP } \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X1S } \\
\hline Pin & Power \\
\hline 1 & GND \\
\hline 2 & GND \\
\hline 3 & \(18-30 \mathrm{~V}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X3C } \\
\hline RS232 \\
\hline Pin & \\
\hline 1 & LCAN_H \\
\hline 2 & TxD \\
\hline 3 & RxD \\
\hline 4 & reserved \\
\hline 5 & GND \\
\hline 6 & reserved \\
\hline 7 & reserved \\
\hline 8 & reserved \\
\hline 9 & LCAN_L \\
\hline
\end{tabular}

\section*{Note for all ports:}

The pins marked with "reserved" are reserved and must not be wired!

Pinout (2-axis version, SLOT1)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{3}{|l|}{ SLOT 1 X8M1 - ENCODER | LVDT / port IW9 / AWX } \\
\hline Signal & Pin & Description of IW9 & Description of AWX \\
\hline LVDT1 & 1 & IW9 GND / axis 1 & AWX1 Pin 1 / axis 1 \\
\hline LVDT1 & 2 & IW9 Pin 2 / axis 1 & AWX1 Pin 2 / axis 1 \\
\hline LVDT1 & 3 & IW9 Pin 1 / axis 1 & AWX1 Pin 3 / axis 1 \\
\hline LVDT1 & 4 & Bridge to Pin 5 & reserved \\
\hline LVDT1 & 5 & Bridge to Pin 4 & AWX1 Pin 4 / axis 1 \\
\hline & 6 & reserved & reserved \\
\hline LVDT2 & 7 & IW9 Pin 1 / axis 2 & AWX2 Pin 3 / axis 2 \\
\hline LVDT2 & 8 & Bridge to Pin 9 & reserved \\
\hline LVDT2 & 9 & Bridge to Pin 8 & AWX2 Pin 4 / axis 2 \\
\hline & 10 & reserved & reserved \\
\hline LVDT2 & 11 & IW9 GND / axis 2 & AWX2 Pin 1 / axis 2 \\
\hline & 12 & reserved & reserved \\
\hline & 13 & reserved & reserved \\
\hline & 14 & reserved & reserved \\
\hline LVDT2 & 15 & IW9 Pin 2 / axis 2 & AWX2 Pin 2 / axis 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 1 X2D1 - digital I/O } \\
\hline Signal & Pin & Description \\
\hline OUT 1 & 1 & Ready for operation / axis 1 sum error \\
\hline OUT 2 & 2 & Ready for operation / axis 2 sum error \\
\hline OUT 3 & 3 & Axis 1 isolator valve control \\
\hline OUT 4 & 4 & Axis 2 isolator valve control \\
\hline OUT 5 & 5 & Open brake \\
\hline OUT 6 & 6 & Controller active \\
\hline OUT 7 & 7 & Speed \(=0\) \\
\hline OUT 8 & 8 & Torque \(=0\) \\
\hline OUT 9 & 9 & reserved \\
\hline OUT 10 & 10 & Operating mode "0" \(=\mathrm{n}\) control "1" = MD open-loop/closed-loop control \\
\hline OUT 11 & 11 & Swivel angle control active \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT \(\mathbf{1}\) X2A1 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin 1+ & 1 & Torque command value \(\pm 10 \mathrm{~V}\) \\
\hline Vin 1- & 2 & Torque command value voltage reference \\
\hline Vin 2+ & 3 & Actual torque value \(\pm 10 \mathrm{~V}\) \\
\hline Vin 2- & 4 & Actual torque value voltage reference \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin \(2+\) & 7 & Actual torque value 4 to \(20 \mathrm{~mA} /\) load cell \\
\hline Cin 2- & 8 & Actual torque value current reference \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & Analog GND \\
\hline Vout 1 & 11 & Analog OUT1 \(\pm 10 \mathrm{~V} /\) actuating variable 1 -> module amplifier \\
\hline Vout 2 & 12 & Analog OUT2 \(\pm 10 \mathrm{~V} /\) actuating variable 2 -> module amplifier \\
\hline Cout1 & 13 & reserved \\
\hline+24 V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Pinout (2-axis version, SLOT2)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{4}{|l|}{ SLOT 2 X8M2 - ENCODER } \\
\hline Signal & Pin & INK description & SSI description \\
\hline -B & 1 & -Ua2 / GEL293 Pin G & \\
\hline +Clk & 2 & & + CLK \\
\hline +R & 3 & reserved & reserved \\
\hline- R & 4 & reserved & reserved \\
\hline +A & 5 & +Ua1 / GEL293 Pin C & \\
\hline -A & 6 & -Ua1 / GEL293 Pin H & \\
\hline -Clk & 7 & & - CLK \\
\hline +B & 8 & +Ua2 / GEL293 Pin B & \\
\hline -DATA & 9 & & - Data \\
\hline GND & 10 & 0 V / GEL293 Pin A & Ground \\
\hline +DATA & 11 & & + Data \\
\hline +5Venc & 12 & +5 V / GEL293 Pin F & \\
\hline +10Vref & 13 & reserved & reserved \\
\hline +24V enc & 14 & & +24V \\
\hline & 15 & reserved & reserved \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 2 X2D2 - digital I/O } \\
\hline Signal & Pin & Description \\
\hline IN 1 & 1 & Enable \\
\hline IN 2 & 2 & Start \\
\hline IN 3 & 3 & Error reset \\
\hline IN 4 & 4 & Open-loop torque control \\
\hline IN 5 & 5 & Closed-loop torque control \\
\hline IN 6 & 6 & Pressure OK \\
\hline IN 7 & 7 & Open brake \\
\hline IN 8 & 8 & reserved \\
\hline IN 9 & 9 & reserved \\
\hline IN 10 & 10 & reserved \\
\hline IN 11 & 11 & Select speed setpoint intern 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 2 X2A2 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin 1+ & 1 & Speed command value signal \(\pm 10 \mathrm{~V}\) \\
\hline Vin 1- & 2 & Speed command value reference \\
\hline Vin 2+ & 3 & Actual pressure value signal 0 to \(10 \mathrm{~V} /\) pressure cell \\
\hline Vin 2- & 4 & Actual pressure value reference \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin \(2+\) & 7 & Actual pressure value current signal 0 to \(20 \mathrm{~mA} /\) pressure cell \\
\hline Cin \(2-\) & 8 & Actual pressure value current reference \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & AGND \\
\hline Vout 1 & 11 & Diagnosis 1 \\
\hline Vout 2 & 12 & Diagnosis 2 \\
\hline Cout1 & 13 & reserved \\
\hline+24 V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Pinout (4-axis version)

\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7C } \\
\hline Pin & CANopen \\
\hline 1 & reserved \\
\hline 2 & CAN_L \\
\hline 3 & CAN_GND \\
\hline 4 & reserved \\
\hline 5 & reserved \\
\hline 6 & reserved \\
\hline 7 & CAN_H \\
\hline 8 & reserved \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X7P PROFIBUS DP } \\
\hline Pin & \\
\hline 1 & reserved \\
\hline 2 & reserved \\
\hline 3 & RxD/TxD-P \\
\hline 4 & CNTR-P \\
\hline 5 & DGND \\
\hline 6 & VP \\
\hline 7 & reserved \\
\hline 8 & RxD/TxD-N \\
\hline 9 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|c|}{ X1S } \\
\hline Pin & Power \\
\hline 1 & GND \\
\hline 2 & GND \\
\hline 3 & \(18-30 \mathrm{~V}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline X3C & RS232 \\
\hline Pin & \\
\hline 1 & LCAN_H \\
\hline 2 & TxD \\
\hline 3 & RxD \\
\hline 4 & reserved \\
\hline 5 & GND \\
\hline 6 & reserved \\
\hline 7 & reserved \\
\hline 8 & reserved \\
\hline 9 & LCAN_L \\
\hline
\end{tabular}

\section*{Note for all ports:}

The pins marked with "reserved" are reserved and must not be wired!

Pinout (4-axis version, SLOT1)

\section*{SLOT 1 X8M1 - ENCODER | LVDT / port IW9 / AWX}
\begin{tabular}{|l|c|l|l|}
\hline Signal & Pin & Description of IW9 & Description of AWX \\
\hline LVDT1 & 1 & IW9 GND / axis 1 & AWX1 Pin 1 / axis 1 \\
\hline LVDT1 & 2 & IW9 Pin 2 / axis 1 & AWX1 Pin 2 / axis 1 \\
\hline LVDT1 & 3 & IW9 Pin 1 / axis 1 & AWX1 Pin 3 / axis 1 \\
\hline LVDT1 & 4 & Bridge to Pin 5 & reserved \\
\hline LVDT1 & 5 & Bridge to Pin 4 & AWX1 Pin 4 / axis 1 \\
\hline & 6 & reserved & reserved \\
\hline LVDT2 & 7 & IW9 Pin 1 / axis 2 & AWX2 Pin 3 / axis 2 \\
\hline LVDT2 & 8 & Bridge to Pin 9 & reserved \\
\hline LVDT2 & 9 & Bridge to Pin 8 & AWX2 Pin 4 / axis 2 \\
\hline & 10 & reserved & reserved \\
\hline LVDT2 & 11 & IW9 GND / axis 2 & AWX2 Pin 1 / axis 2 \\
\hline & 12 & reserved & reserved \\
\hline & 13 & reserved & reserved \\
\hline & 14 & reserved & reserved \\
\hline LVDT2 & 15 & IW9 Pin 2 / axis 2 & AWX2 Pin 2 / axis 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline SLOT 1 X2D1 - digital I/O \\
\hline Signal & Pin & Description \\
\hline OUT 1 & 1 & Ready for operation / axis 1 sum error \\
\hline OUT 2 & 2 & Ready for operation / axis 2 sum error \\
\hline OUT 3 & 3 & Axis 1 isolator valve control \\
\hline OUT 4 & 4 & Axis 2 isolator valve control \\
\hline OUT 5 & 5 & Open brake \\
\hline OUT 6 & 6 & Controller active \\
\hline OUT 7 & 7 & Speed \(=0\) \\
\hline OUT 8 & 8 & Torque \(=0\) \\
\hline OUT 9 & 9 & reserved \\
\hline OUT 10 & 10 & Operating mode "0" \(=\mathrm{n}\) control "1" = MD open-loop/closed-loop control \\
\hline OUT 11 & 11 & Swivel angle control active \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT \(\mathbf{1}\) X2A1 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin 1+ & 1 & Torque command value \(\pm 10 \mathrm{~V}\) \\
\hline Vin 1- & 2 & Torque command value voltage reference \\
\hline Vin \(2+\) & 3 & Actual torque value \(\pm 10 \mathrm{~V}\) \\
\hline Vin 2- & 4 & Actual torque value voltage reference \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin \(2+\) & 7 & Actual torque value 4 to \(20 \mathrm{~mA} /\) load cell \\
\hline Cin \(2-\) & 8 & Actual torque value current reference \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & Analog GND \\
\hline Vout 1 & 11 & Analog OUT1 \(\pm 10 \mathrm{~V} /\) actuating variable 1 -> module amplifier \\
\hline Vout 2 & 12 & Analog OUT2 \(\pm 10 \mathrm{~V} /\) actuating variable 2 -> module amplifier \\
\hline Cout1 & 13 & Analog OUT1 \(\pm 20 \mathrm{~mA}\) \\
\hline+24 V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Pinout (4-axis version, SLOT2)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{3}{|l|}{ SLOT 2 X8M2 - ENCODER | LVDT / port IW9 / AWX } \\
\hline Signal & Pin & Description of IW9 & Description of AWX \\
\hline LVDT1 & 1 & IW9 GND / axis 3 & AWX1 Pin 1 / axis 3 \\
\hline LVDT1 & 2 & IW9 Pin 2 / axis 3 & AWX1 Pin 2 / axis 3 \\
\hline LVDT1 & 3 & IW9 Pin 1 / axis 3 & AWX1 Pin 3 / axis 3 \\
\hline LVDT1 & 4 & Bridge to Pin 5 & reserved \\
\hline LVDT1 & 5 & Bridge to Pin 4 & AWX1 Pin 4 / axis 3 \\
\hline & 6 & reserved & reserved \\
\hline LVDT2 & 7 & IW9 Pin 1 / axis 4 & AWX2 Pin 3 / axis 4 \\
\hline LVDT2 & 8 & Bridge to Pin 9 & reserved \\
\hline LVDT2 & 9 & Bridge to Pin 8 & AWX2 Pin 4 / axis 4 \\
\hline & 10 & reserved & reserved \\
\hline LVDT2 & 11 & IW9 GND / axis 4 & AWX2 Pin 1 / axis 4 \\
\hline & 12 & reserved & reserved \\
\hline & 13 & reserved & reserved \\
\hline & 14 & reserved & reserved \\
\hline LVDT2 & 15 & IW9 Pin 2 / axis 4 & AWX2 Pin 2 / axis 4 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 2 X2D2 - digital I/O } \\
\hline Signal & Pin & Description \\
\hline OUT 1 & 1 & Ready for operation / axis 3 sum error \\
\hline OUT 2 & 2 & Ready for operation / axis 4 sum error \\
\hline OUT 3 & 3 & Axis 3 isolator valve control \\
\hline OUT 4 & 4 & Axis 4 isolator valve control \\
\hline OUT 5 & 5 & reserved \\
\hline OUT 6 & 6 & reserved \\
\hline OUT 7 & 7 & reserved \\
\hline OUT 8 & 8 & reserved \\
\hline OUT 9 & 9 & reserved \\
\hline OUT 10 & 10 & reserved \\
\hline OUT 11 & 11 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 2 X2A2 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin 1+ & 1 & reserved \\
\hline Vin 1- & 2 & reserved \\
\hline Vin 2+ & 3 & reserved \\
\hline Vin 2- & 4 & reserved \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin 2+ & 7 & reserved \\
\hline Cin 2- & 8 & reserved \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & AGND \\
\hline Vout 1 & 11 & Analog OUT3 \(\pm 10 \mathrm{~V} /\) actuating variable 3 -> module amplifier \\
\hline Vout 2 & 12 & Analog OUT4 \(\pm 10 \mathrm{~V} /\) actuating variable 4 -> module amplifier \\
\hline Cout1 & 13 & reserved \\
\hline+24 V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Pinout (4-axis version, SLOT3)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{3}{|l|}{ SLOT 3 X8M3 - ENCODER } \\
\hline Signal & Pin & INK description & SSI description \\
\hline -B & 1 & -Ua2 / GEL293 Pin G & \\
\hline +Clk & 2 & & + CLK \\
\hline +R & 3 & reserved & reserved \\
\hline- R & 4 & reserved & reserved \\
\hline +A & 5 & +Ua1 / GEL293 Pin C & \\
\hline -A & 6 & -Ua1 / GEL293 Pin H & \\
\hline -Clk & 7 & & - CLK \\
\hline +B & 8 & +Ua2 / GEL293 Pin B & \\
\hline -DATA & 9 & & - Data \\
\hline GND & 10 & 0 V / GEL293 Pin A & Ground \\
\hline +DATA & 11 & & + Data \\
\hline +5Venc & 12 & +5 V / GEL293 Pin F & \\
\hline +10Vref & 13 & reserved & reserved \\
\hline +24V enc & 14 & & +24V \\
\hline & 15 & reserved & reserved \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 3 X2D3 - digital I/O } \\
\hline Signal & Pin & Description \\
\hline IN 1 & 1 & Enable \\
\hline IN 2 & 2 & Start \\
\hline IN 3 & 3 & Error reset \\
\hline IN 4 & 4 & Open-loop torque control \\
\hline IN 5 & 5 & Closed-loop torque control \\
\hline IN 6 & 6 & Pressure OK \\
\hline IN 7 & 7 & Open brake \\
\hline IN 8 & 8 & reserved \\
\hline IN 9 & 9 & reserved \\
\hline IN 10 & 10 & reserved \\
\hline IN 11 & 11 & Select speed setpoint intern 2 \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 3 X2A3 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin \(1+\) & 1 & Speed command value signal \(\pm 10 \mathrm{~V}\) \\
\hline Vin 1- & 2 & Speed command value reference \\
\hline Vin 2+ & 3 & Actual pressure value signal 0 to \(10 \mathrm{~V} /\) pressure cell \\
\hline Vin 2- & 4 & Actual pressure value reference \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin \(2+\) & 7 & Actual pressure value current signal 0 to \(20 \mathrm{~mA} /\) pressure cell \\
\hline Cin \(2-\) & 8 & Actual pressure value current reference \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & AGND \\
\hline Vout 1 & 11 & Diagnosis 1 \\
\hline Vout 2 & 12 & reserved \\
\hline Cout1 & 13 & reserved \\
\hline+24 V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Pinout (4-axis version, SLOT4)
\begin{tabular}{|l|c|l|l|}
\hline \multicolumn{4}{|l|}{ SLOT 4 X8M4 - ENCODER | INK2 } \\
\hline Signal & Pin & INK description & SSI description \\
\hline -B & 1 & -Ua2 / GEL293 Pin G & \\
\hline +CIk & 2 & & + CLK \\
\hline +R & 3 & reserved & reserved \\
\hline -R & 4 & reserved & reserved \\
\hline +A & 5 & +Ua1 / GEL293 Pin C & \\
\hline -A & 6 & -Ua1 / GEL293 Pin H & - CLK \\
\hline -Clk & 7 & & \\
\hline +B & 8 & +Ua2 / GEL293 Pin B & - Data \\
\hline -DATA & 9 & & Ground \\
\hline GND & 10 & 0 V / GEL293 Pin A & + Data \\
\hline +DATA & 11 & & \\
\hline +5Venc & 12 & +5 V / GEL293 Pin F & reserved \\
\hline +10Vref & 13 & reserved & +24V \\
\hline +24V enc & 14 & & reserved \\
\hline & 15 & reserved & \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 4 X2D4 - digital I/O } \\
\hline Signal & Pin & Description \\
\hline IN 1 & 1 & reserved \\
\hline IN 2 & 2 & reserved \\
\hline IN 3 & 3 & reserved \\
\hline IN 4 & 4 & reserved \\
\hline IN 5 & 5 & reserved \\
\hline IN 6 & 6 & reserved \\
\hline IN 7 & 7 & reserved \\
\hline IN 8 & 8 & reserved \\
\hline IN 9 & 9 & reserved \\
\hline IN 10 & 10 & reserved \\
\hline IN 11 & 11 & reserved \\
\hline
\end{tabular}
\begin{tabular}{|l|c|l|}
\hline \multicolumn{3}{|l|}{ SLOT 4 X2A4 - analog I/O } \\
\hline Signal & Pin & Description \\
\hline Vin 1+ & 1 & reserved \\
\hline Vin 1- & 2 & reserved \\
\hline Vin 2+ & 3 & reserved \\
\hline Vin 2- & 4 & reserved \\
\hline Cin 1+ & 5 & reserved \\
\hline Cin 1- & 6 & reserved \\
\hline Cin 2+ & 7 & reserved \\
\hline Cin 2- & 8 & reserved \\
\hline n.c. & 9 & reserved \\
\hline AGND & 10 & AGND \\
\hline Vout 1 & 11 & Diagnosis 2 \\
\hline Vout 2 & 12 & reserved \\
\hline Cout1 & 13 & reserved \\
\hline +24V & 14 & 24 V output voltage \\
\hline n.c. & 15 & reserved \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

\section*{Project Planning / Maintenance Instructions / Additional Information}

\section*{Product documentation for SYHNC100-SEK}

\section*{Data sheet 30162}

Operating instructions 30162-B

Software description 30162-01-Z

Declaration on environmental compatibility 30162-U

WIN-PED 6

General Information on the maintenance and commissioning of hydraulic components ' 07800 / 07900

Commissioning software and documentation on the Internet: www.boschrexroth.com/HNC100

Maintenance instructions:
- The devices have been tested in the plant and are supplied with default settings.
- Only complete units can be repaired. The repaired units will be supplied with default settings. User-specific settings are not maintained. The operator will have to re-transfer the corresponding user parameters and programs.

\section*{Notes:}
- Electric signals taken out via control electronics (e.g. signal "No error") may not be used for the actuation of safety-relevant machine functions! (See also the European standard "Safety requirements for fluid power systems and their components Hydraulics", EN 982.)
- If electromagnetic interference must be expected, take appropriate measures to safeguard the function (depending on the application, e.g. screening, filtration)!
- For further notes see operating instructions 30162-B

\section*{Project Planning / Maintenance Instructions / Additional Information}

\section*{Installation position}

Don't install the SYHNC100-SEK next to power electronics (e.g. frequency converters); the power supply unit of the SYHNC100-SEK should be installed as close to the SYHNC100-SEK as possible.

\section*{Voltage supply}

Keep the connection as short as possible, lay forward and return conductor (+24 V / GND) together.
When supplying an inductive position transducer via the interface of the SYHNC100-SEK, the provided voltage must comply with the required data of the position transducer.

\section*{Earthing of the housing}

The necessary earthing of the SYHNC100-SEK housing is effected by connecting the mounting bolts with the control cabinet's rear panel.

\section*{Screening}

Use only cables with a shield of copper braiding for signal lines. Usually, connect one side of the shield with the SYHNC100-SEK side. Connect the cable shield extensively with the metallized connector housing (push back the shield and clamp it under the pull relief).

\section*{Wiring}
- Largest possible spatial separation of signal and load lines
- Don't lead signal lines through strong magnetic fields
- Pass signal lines without interruptions
- Twist load lines (e.g. voltage supply) passed as two individual wires
- Don't pass the signal lines parallely to load lines

\section*{System interference suppression}
- Switched inductivities:
- DC \(\rightarrow\) Antiparallel free-wheeling diode via actuator winding
- AC \(\rightarrow\) Type-related R/C combination via actuator winding
- Electric motors:
- Lead the R/C combinations of each motor winding to earth
- Frequency converter:
- Provide an input filter in the voltage supply of the frequency converter
- Pass control lines of the motor in a shielded form and separate from other lines and/or provide an output filter for motor lines
- Extensive contact of the frequency converter housing with the rear panel of the control cabinet

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49(0) 9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Bosch Group

\section*{Digital axis control HNC100}

\section*{Types VT-HNC100-1 and VT-HNC100-2}

Component series 2 X

\section*{Table of contents}

Contents Page
Features 2
Ordering code and standard types 2
Software project planning 3
Overview of controller functions 3
System overview 4
Overview of NC commands for sequence control 5
Technical data 6 and 7
Connector pinout VT-HNC100-1-2X/.-08... 8
VT-HNC100-2-2X/.-16... 9
VT-HNC100-1-2X/.-24... 10
Unit dimensions 11
Engineering / maintenance notes / supplementary information 12

\section*{Features}

The digital axis control HNC100 is a programmable NC control for a closed-loop controlled axis. It meets the specific requirements for controlling hydraulic drives and, in addition, offers the possibility of controlling electric drives.
With regard to immunity to interference, mechanical resistance to vibration and shock and climate-proofness, the HNC100 is designed for use in harsh industrial environments. It conforms with EC Directives (CE mark).

\section*{Fields of application:}
- Machine tools, plastic processing machines, special machines
- Presses
- Transfer lines
- Rail-bound vehicles

\section*{Programming:}
- User programming with PC
- NC language with subroutine technique and conditional jumps
- Separate NC program for function sequences
- Local CAN bus for parameterizing several HNC100

\section*{Operation:}
- Comfortable administration of data on PC

\section*{Process interfacing:}
- 8, 16 or 24 digital inputs and outputs each
- Comfortable configuration of field bus interfacing with the help of the WIN-PED 5 Bus Manager

\section*{Hydraulic axes:}
- Measuring system:
- Incremental or absolute (SSI)
- Analog 0 to \(\pm 10 \mathrm{~V}\) and 4 to 20 mA
- Reference voltage \(\pm 10 \mathrm{~V}\)
- Voltage or current control variable output
- Freely configurable controller variants
- Position controller, pressure/force controller
- Position-dependent braking
- Alternating control (position/pressure)
- Synchronization control for 2 axes

\section*{Ordering code}

VT-ZKO-USB/S-1-1X/V0/0,
Material no.: R901066684

\footnotetext{
\({ }^{\text {1) }}\) Additional plug-in connector, type 6ES7972-0BA41-0XA0 for PROFIBUS DP is not included in the scope of supply and must be ordered separately! Material no.: R900050152
}

\section*{Software project planning}

\section*{Configuration}

The operation of the HNC100 is based on the creation of ap-plication-specific data sets. These data sets are generated on a PC and sent via the serial interface to the HNC100. The combination of the user program and data sets is called "project". The software configuration follows determined steps:
1. The tasks to be performed by the HNC100 are to be defined and in flowchart. The definition also refers to the meaning of inputs and outputs and the parameters used.
2. The functions of the sequence charts have to be implemented in the form of a sequence of NC commands.
3. The machine data (selection of transducers and controllers) and the parameters of the NC program have to be defined.
4. The data are sent to the HNC100.
5. Settings and program sequences are optimized on the machine.

\section*{PC program "WIN-PED 5"}

The PC program "WIN-PED 5" helps the user perform configuration tasks. It is used for programming, setting and diagnostics of the HNC100.

\section*{Scope of functions:}
- Convenient dialog functions for online or offline setting of machine data
- NC Editor with integrated syntax check and program compiler
- Support for the definition of parameters used in the NC program
- Dialog window for online setting of parameter values
- Comprehensive options for displaying process data, digital inputs, outputs and flags
- Recording and graphical representation of up to four process variables via a selection of trigger options
- Dialog for the graphical definition of special functions (determination of function via polygon)

\section*{System requirements:}
- IBM PC or compatible system
- Windows 2000 or Windows XP
- RAM (recommended: 256 MB)
- 60 MB free hard disk space

\section*{Note for storing R parameters in the HNC100:}

Damage to the internal memory (EEPROM) due to too high a number of write access!
When ticking the "Save in EEPROM" checkbox (WIN-PED menu: R parameter), you write to the internal memory (EEPROM). As every EEPROM allows only for a limited number of write access before its cells are destroyed, you should make sure that the number of such write access is limited.

\section*{Information on the scope of supply:}

The PC program "WIN-PED 5" is not included in the scope of supply. It can be downloaded free of charge on the Internet! Download on the Internet: www.boschrexroth.de/hnc100 Queries: support.nc-systems@boschrexroth.de

\section*{Overview of controller functions}

\section*{Position controller:}
- PDT1-controller
- Linear gain characteristic curve
- Direction-dependent gain adjustment
- "Inflected" gain characteristic curve
- Gain alteration possible via the NC program
- Fine positioning
- Residual voltage principle
- Zero point error compensation
- Active damping
- Command value feedforward
- Limitation of control output via the NC program
- "Position-dependent braking"
- Intermediate electronics for use with commercial NC controls
- Synchronization control (only in conjunction with VT-HNC100-2...)

\section*{Pressure/force controller:}
- PIDT1-controller
- I-component can be cut in and out via window
- Differential pressure evaluation
- Own scan rate

\section*{Velocity controller:}
- PI-controller
- I-component can be cut in and out via window

\section*{Monitoring functions:}
- Dynamic following error monitoring
- Traversing range limits (electronic limit switches)
- Cable break monitoring for incremental and SSI encoders
- Cable break monitoring for sensors with 4 to 20 mA output

\section*{System overview}

\section*{Overview of NC commands for sequence control}

For the programming of sequences, the following NC commands are available at the time of publication of this data sheet:
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Definition part: } \\
\hline /TRIG & Definition of a switching point \\
\hline /E & Suppression of limit switches \\
\hline /OVER & Override of velocity \\
\hline /KD & Definition of a curve \\
\hline /KT & Scan rate of a curve \\
\hline /DFN & Normalization factor for curve polygon \\
\hline /SE & Definition of system inputs \\
\hline /SA & Definition of system outputs \\
\hline NC Interpreter: \\
\hline KURVE & Start and stop of the curve function \\
\hline K & Output of a voltage \\
\hline KP & Alteration of controller gain \\
\hline CLR & Resetting of output or flag \\
\hline SET & Setting of output or flag \\
\hline IF & Conditional branching \\
\hline JMP & Jump to a flag (L000 to L1999) \\
\hline JSR & Subroutine call \\
\hline M17 & End of subroutine \\
\hline M02 & End of main program \\
\hline B & Variable for global variables \\
\hline C & Variable for local variables \\
\hline Lxxx & Jump flag \\
\hline R & Value assignment for an R parameter \\
\hline G64 & Limitation of control output \\
\hline BINE & Reading of binary-coded inputs \\
\hline BINA & Output to binary-coded outputs \\
\hline M22I & Setting of command value for position controller \\
\hline G65/G66 & \begin{tabular}{l}
Position monitoring in closed-loop pressure \\
control "ON/OFF" \\
\hline \#define \\
Instruction \\
\hline /EC \\
\hline Definition of transducer monitoring \\
\hline /ERROR \\
\hline \\
\hline DefPSWITCH \\
\hline
\end{tabular} Fast jump switch \\
\hline
\end{tabular}
\begin{tabular}{|l|l|}
\hline \multicolumn{2}{|l|}{ Sequence control: } \\
\hline G01 & Point-to-point travel \\
\hline G30 & Point-to-point travel for oscillating movements \\
\hline BREAK & Interruption of G01 or G30 \\
\hline STOP & Deceleration and completion, G01, G30 \\
\hline G53/G54 & Zero point compensation "OFF/ON" \\
\hline G70 & Activation of closed-loop velocity control \\
\hline G55 & \begin{tabular}{l}
"Setting/reading" of values of zero point com- \\
pensation
\end{tabular} \\
\hline G63 & \begin{tabular}{l}
Transition from closed-loop pressure/velocity \\
control to closed-loop position control
\end{tabular} \\
\hline M33/M34 & Activation/deactivation" of position controller \\
\hline M35/M36 & Activation/deactivation" of synchronism \\
\hline G26 & \begin{tabular}{l}
Traversing to positive stop, closed-loop con- \\
trolled
\end{tabular} \\
\hline G25 & \begin{tabular}{l}
Traversing to positive stop, open-loop con- \\
trolled
\end{tabular} \\
\hline G27, G28 & \begin{tabular}{l}
Activation of pressure controller in dependence \\
upon a position
\end{tabular} \\
\hline G60 & Activation of pressure controller \\
\hline G61 & Activation of pressure limitation \\
\hline G62 & Deactivation of pressure limitation \\
\hline M22 & \begin{tabular}{l}
Setting the actual and command value for the \\
position controller
\end{tabular} \\
\hline G04 & Dwell time \\
\hline M00 & Waiting for input or flag \\
\hline M90 & Setting of output or flag \\
\hline M91 & Resetting of output or flag \\
\hline
\end{tabular}

Technical data (for applications outside these parameters, please consult us!)

\({ }^{1)}\) Not all of the channels can be used simultaneously. The voltage inputs and the current inputs are provided with a common pin so that either the voltage input or the current input can be used at a time. The current can be looped through several current measuring devices. Otherwise, a jumper must be plugged from pin "lin" to pin "analog_GND".
\({ }^{2}\)) If the factory settings are not sufficient, the measuring equipment can be calibrated on site according to the system requirements.
\({ }^{3)}\) Due to the characteristics of these high-resistance inputs, no internal protective circuits with diodes or capacitors can be used. For this reason, when connecting analog signals to inputs \(\mathrm{U}_{\mathrm{imp}} 1\) to \(\mathrm{U}_{\text {imp }} 4\), all required protective measures, EMC protection, signal filtration, must be connected externally in the incoming circuit.
4) Outputs " \(\mathrm{U}_{\text {out }} 1\) " and "I \(\mathrm{I}_{\text {out }} 1\) " as well as " \(\mathrm{U}_{\text {out }} 2\) " and " \(\mathrm{I}_{\text {out }} 2\) " are electrically coupled. Normalization can be set to voltage or current by means of software.

\section*{Technical data (continued)}
\begin{tabular}{|c|c|c|}
\hline Serial interfaces & Standard Optional & RS232 (9,6 KBaud) PROFIBUS DP (max. 12 MBaud) CANopen, INTERBUS-S \\
\hline Switching inputs & Number Logic level Connection & \[
\begin{aligned}
& 8,16 \text { or } 24 \\
& \log 0 \text { (low) } \leq 5 \mathrm{~V} ; \log 1 \text { (high) } \geq 10 \mathrm{~V} \text { to } U_{\mathrm{B}} ; R_{\mathrm{i}}=3 \mathrm{k} \Omega \pm 10 \% \\
& \text { Flexible conductor up to } 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] \\
\hline Switching outputs & Number Logic level Connection & \[
\begin{aligned}
& 8,16 \text { or } 24 \\
& \log 0 \text { (low) } \leq 2 \mathrm{~V} \text {; } \log 1 \text { (high) } \leq U_{\mathrm{B}} ; I_{\max }=50 \mathrm{~mA} \\
& \text { Flexible conductor up to } 1.5 \mathrm{~mm}^{2} \\
& \hline
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{Digital position transducers:} \\
\hline \multicolumn{3}{|l|}{- Incremental transducer (transducer with TTL output)} \\
\hline - Input voltage & \(\log 0\) & 0 to 1 V \\
\hline & \(\log 1\) & 2.8 to 5.5 V \\
\hline - Input current & \(\log 0\) & -0.8 mA (at 0 V) \\
\hline & \(\log 1\) & 0.8 mA (at 5 V) \\
\hline - Max. frequency referred to Ua 1 & \(f_{\text {max }}\) & 250 kHz \\
\hline \multicolumn{3}{|l|}{- SSI transducer} \\
\hline - Coding & & Gray code \\
\hline - Data width & & Adjustable up to max. 28 bits \\
\hline \multicolumn{3}{|l|}{- Line receiver (TTL)} \\
\hline Input voltage & \(\log 0\) & 0 to 1 V \\
\hline & \(\log 1\) & 2.8 to 5.5 V \\
\hline Input current & \(\log 0\) & -0.8 mA (at 0 V) \\
\hline & \(\log 1\) & 0.8 mA (at 5 V) \\
\hline \multicolumn{3}{|l|}{- Line driver} \\
\hline Output voltage & \(\log 0\) & 0 to 0.5 V (at \(120 \Omega\)) \\
\hline & \(\log 1\) & 2.5 to 5.5 V (at \(120 \Omega\)) \\
\hline Voltage supply to position transducers by the HNC100 & U & \(U_{B}\) or +5VDC \(\pm 5 \%\); max. 200 mA \\
\hline Max. voltage for all input signals & \(U_{\text {max }}\) & \(U_{B}-1 \mathrm{~V}\) (signals are not opto-decoupled) \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Inductive position transducers: \\
- Number \\
- Power supply
\end{tabular}}} & \\
\hline & & \begin{tabular}{l}
\(2 \mathrm{~V}\left(I_{\text {max }}=30 \mathrm{~mA} /\right.\) channel \()\) \\
Balanced to ground, short-circuit-proof, can be synchronized between 4.8 and 5.2 kHz , optional compensation capacitor 220 nF ; amplitude stability \(\leq 0.2 \% / 10 \mathrm{~K}\); carrier frequency \(5 \mathrm{~Hz} \pm 2 \%\); inductive transducers in half- and full-bridge circuit and 3- and 4-conductor circuit; linearity error < \(0.1 \%\)
\end{tabular} \\
\hline Reference voltage & \(U_{\text {ref }}\) & \(+10 \mathrm{~V} \pm 25 \mathrm{mV}\) and -10 V \(\pm 25 \mathrm{mV}\) (20 mA each) \\
\hline \begin{tabular}{l}
Dimensions (\(\mathrm{W} \times \mathrm{H} \times \mathrm{D}\)): \\
- VT-HNC100-1-2X/.-08-.-. \\
- VT-HNC100-2-2X/.-16-.-. and VT-HNC100-1
\end{tabular} & /.-24-.-. & \[
\begin{array}{|l}
71 \times 155 \times 204 \mathrm{~mm} \\
106.5 \times 155 \times 204 \mathrm{~mm} \\
\hline
\end{array}
\] \\
\hline Permissible operating temperature range & \(\vartheta\) & 0 to \(50{ }^{\circ} \mathrm{C}\) \\
\hline Storage temperature range & \(\vartheta\) & -20 to \(+70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Weight:} & \\
\hline \multicolumn{2}{|l|}{- VT-HNC100-1-2X/.-08-.-. m mimer} & 1.0 kg \\
\hline \multicolumn{2}{|l|}{- VT-HNC100-2-2X/.-16-.-. and VT-HNC100-1-2X/.-24--. m} & 1.2 kg \\
\hline
\end{tabular}

\section*{Note!}

For details regarding environment simulation testing in the fields of EMC (electromagnetic compatibility), climate and
mechanical stress, see RE 30131-U (declaration on environmental compatibility).

Connector pinout VT-HNC100-1-2X/.-08... (single-axis variant)
\begin{tabular}{|ll|l|}
\hline \multicolumn{2}{|l|}{ X8: Local CAN } \\
\hline Pin & \(\mathbf{1}\) & CAN_GND \\
& \(\mathbf{2}\) & res \\
& \(\mathbf{3}\) & res \\
& \(\mathbf{4}\) & res \\
& \(\mathbf{5}\) & res \\
& \(\mathbf{6}\) & res \\
& \(\mathbf{7}\) & res \\
& \(\mathbf{8}\) & CAN_H \\
& \(\mathbf{9}\) & CAN_L \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|}
\hline \multicolumn{3}{|l|}{ X4: COM / local CAN } \\
\hline Pin & \(\mathbf{1}\) & CAN_GND \\
& \(\mathbf{2}\) & TxD \\
& \(\mathbf{3}\) & CTS \\
& \(\mathbf{4}\) & 24 VN \\
& \(\mathbf{5}\) & 0 VN \\
& \(\mathbf{6}\) & RxD \\
& \(\mathbf{7}\) & RTS \\
& \(\mathbf{8}\) & CAN_H \\
& \(\mathbf{9}\) & CAN_L \\
\hline
\end{tabular}

S1, S2:
Address, baud rate CAN

\section*{Note!}

The pins identified with "res" are reserved and must not be connected.

\begin{tabular}{|r|ll|}
\hline \multicolumn{1}{|l|}{ X3: } & Encoder \\
\hline Pin & \begin{tabular}{l}
incremen- \\
tal
\end{tabular} & SSI \\
\hline \(\mathbf{1}\) & /Ua 2 & \\
\(\mathbf{2}\) & & Clocking \\
\(\mathbf{3}\) & Ua 0 & \\
\(\mathbf{4}\) & Ua 0 & \\
\(\mathbf{5}\) & Ua 1 & Data \\
\(\mathbf{6}\) & IUa 1 & /Data \\
\(\mathbf{7}\) & & /Clocking \\
\(\mathbf{8}\) & Ua 2 & \\
\(\mathbf{9}\) & res & \\
\(\mathbf{1 0}\) & OVN & \\
\(\mathbf{1 1}\) & res & \\
\(\mathbf{1 2}\) & 5 VTTL (max. 150 mA\()\) \\
\(\mathbf{1 3}\) & res \\
\(\mathbf{1 4}\) & 24 VN (max. 200 mA\()\) \\
\(\mathbf{1 5}\) & res & \\
\hline
\end{tabular}
\begin{tabular}{|lr|l|}
\hline \multicolumn{2}{|c|}{ X1: Digital I/O } \\
\hline Pin & \(\mathbf{1}\) & IN1 \\
& \(\mathbf{2}\) & IN2 \\
& \(\mathbf{3}\) & IN3 \\
& \(\mathbf{4}\) & IN4 \\
& \(\mathbf{5}\) & IN5 \\
& \(\mathbf{6}\) & IN6 \\
& \(\mathbf{7}\) & IN7 \\
& \(\mathbf{8}\) & IN8 \\
& \(\mathbf{9}\) & OUT1 \\
\(\mathbf{1 0}\) & OUT2 \\
\(\mathbf{1 1}\) & OUT3 \\
\(\mathbf{1 2}\) & OUT4 \\
\(\mathbf{1 3}\) & OUT5 \\
\(\mathbf{1 4}\) & OUT6 \\
\(\mathbf{1 5}\) & OUT7 \\
\(\mathbf{1 6}\) & OUT8 \\
\(\mathbf{1 7}\) & Ierror \\
\(\mathbf{1 8}\) & res \\
\hline
\end{tabular}
\begin{tabular}{|c|ccc|}
\hline \multicolumn{4}{|c|}{ X7: } \\
\hline Pin & CANopenication with higher-level control \\
\hline \(\mathbf{1}\) & n.c. & inductive & \begin{tabular}{c}
INTERBUS-S \\
(IN)
\end{tabular} \\
\hline \(\mathbf{2}\) & CAN_L & Supply 1 + & DO1 \\
\(\mathbf{3}\) & CAN_GND & Signal 1- & DI1 \\
\(\mathbf{4}\) & n.c. & Signal 1- & GND1 \\
\(\mathbf{5}\) & n.c. & Supply 2 + & n.c. \\
\(\mathbf{6}\) & n.c. & Supply 2- & /DO1 \\
\(\mathbf{7}\) & CAN_H & Signal 2 + & /DI1 \\
\(\mathbf{8}\) & n.c. & Signal 2- & n.c. \\
\(\mathbf{9}\) & n.c. & Sync IN/OUT & n.c. \\
\hline
\end{tabular}
\begin{tabular}{|ll|l|}
\hline X6: & Power supply \\
\hline Pin & \(\mathbf{1}\) & Shield \\
& \(\mathbf{2}\) & GND \\
& \(\mathbf{3}\) & \(18-36\) VDC \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{X2: Analog IN / OUT} \\
\hline Pin 1 & \(\mathrm{U}_{\text {in }} 1+\quad \mathrm{I}_{\text {in }} 1-\) \\
\hline 2 & \(\mathrm{U}_{\text {in }} 1-\) \\
\hline 3 & \(\mathrm{U}_{\text {in }} 2+\quad \mathrm{I}_{\text {in }} 2-\) \\
\hline 4 & \(\mathrm{U}_{\text {in }} 2-\) \\
\hline 5 & \(\mathrm{U}_{\text {in }} 3+\quad \mathrm{I}_{\text {in }} 3-\) \\
\hline 6 & \(\mathrm{U}_{\text {in }} 3-\) \\
\hline 7 & \(\mathrm{U}_{\text {in }} 4+\quad \mathrm{I}_{\text {in }} 4-\) \\
\hline 8 & \(\mathrm{U}_{\text {in }} 4\) - \\
\hline 9 & \(\mathrm{I}_{\text {out }} 2\) \\
\hline 10 & \(\mathrm{U}_{\text {out }} 2\) \\
\hline 11 & analog_GND \\
\hline 12 & \(\mathrm{U}_{\text {ref }}=+10 \mathrm{~V}\) \\
\hline 13 & \(\mathrm{U}_{\text {ref }}=-10 \mathrm{~V}\) \\
\hline 14 & \(\mathrm{I}_{\text {out }} 1\) \\
\hline 15 & \(\mathrm{U}_{\text {out }} 1\) \\
\hline 16 & \(\mathrm{U}_{\text {out }} 3\) \\
\hline 17 & \(\mathrm{U}_{\text {out }} 4\) \\
\hline 18 & \(\mathrm{I}_{\text {in }} 1+\) \\
\hline 19 & \(\mathrm{l}_{\text {in }} 2+\) \\
\hline 20 & \(\mathrm{l}_{\text {in }} 3+\) \\
\hline 21 & \(\mathrm{l}_{\text {in }} 4+\) \\
\hline 22 & \(\mathrm{U}_{\mathrm{imp}} 1\) \\
\hline 23 & \(\mathrm{U}_{\mathrm{imp}} 2\) \\
\hline 24 & \(\mathrm{U}_{\mathrm{imp}} 3\) \\
\hline 25 & \(\mathrm{U}_{\mathrm{imp}} 4\) \\
\hline
\end{tabular}

Connector pinout VT-HNC100-2-2X/.-16... (2-axis variant)

Connector pinout VT-HNC100-1-2X/.-24... (single-axis variant)

Unit dimensions (dimensions in mm)

() ... dimensions are valid for VT-HNC100-2-2X/.-16-.-. and VT-HNC100-1-2X/.-24-.-.

\section*{Engineering / maintenance notes / supplementary information}

\section*{Product documentation for VT-HNC100, component series 2X}

Product information RE 30131-P
Technical data sheet RE 30131
Wiring diagrams RE 30131-Z
Declaration on environmental compatibility RE 30131-U
WIN-PED online help
Machine data
NC commands (R parameters)
Curve function
Bus Manager
Diagnosis
General information on the maintenance and commissioning of hydraulic components RE 07800/RE 07900

Commissioning software and documentation on the Internet: www.boschrexroth.com/HNC100

\section*{Notes on use:}

The VT-HNC100... 2 X is exclusively intended for being integrated into a machine or system or assembled with other components to form a machine or system. The product may only be commissioned when it is integrated in the machine/system, for which it is intended.
Adhere to the operating conditions and performance limits specified in the technical data. The VT-HNC100...2X is used for the open and closed-loop control of position, pressure and velocity of electrohydraulic axes. For operation of the device an additional, higher-level control logic with corresponding I/O components is required, which, in conjunction with the VT-HNC100...2X, holistically control the motion sequence of the machine and also monitor it with regard to safety.
The VT-HNC100...2X must not be used in explosive atmospheres.
The VT-HNC100... 2 X is technical equipment that is not intended for private use.

\section*{Engineering / maintenance notes / supplementary information}

\section*{Engineering notes:}
- If electromagnetic interference has to be expected, take suitable measures for ensuring the function (depending on the application, e.g. shield, filtration)!
- Use low-capacitance cables; whenever possible, establish cable connections without intermediate terminals.
- Electromagnetic sources of interference (e.g. frequency converters) must not be installed in the direct vicinity of the control electronics.
- Power cables must not be routed in the direct vicinity of the controller card.
- Do not install cables of the control electronics in the direct vicinity of power cables.
- Install sensor cables separately.
- The distance to aerial lines, radio sources and radar equipment must be at least 1 meter.
- Use highly flexible CU conductors (\(\mathrm{min} 2.5 \mathrm{~mm}^{2}\)) for connecting the system ground! The system ground is an essential, integral part of EMC protection of the controller card. It dissipates interference that is transported to the controller card via data and supply voltage cables. This function can only be ensured, if the system ground itself does not inject interference into the controller card. Rexroth recommends that also solenoid cables be shielded.
- Electrical signals brought out via control electronics (e.g. signal "no error") must not be used for switching safety-relevant machine functions (see also European standard "Safety requirements for fluid power systems and components - hydraulics", EN 982.)
- For further notes, see WIN-PED 5 online help

\section*{Maintenance notes}
- The devices are tested in the factory and shipped with default settings.
- Only complete devices can be repaired. The repaired components will again be returned with default settings. User-specific settings are not retained. The operator is responsible for reloading the corresponding user parameters and programs.

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49(0) 9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\author{
Rexroth \\ Bosch Group
}

\title{
Digital \\ multi-axis NC control
}

\section*{Type VT-MAC8}

Component series 1 X

Table of contents
Contents Page
Features 2
System overview 2
Ordering code for system 3
Software project planning 4
Overview of the controller functions 4
NC interpreter 5
ECL-Win programming language 6
Technical data 7
Pin assignment master card 9
Pin assignment slave card 12
Unit dimensions 13

\section*{Features}

The MAC8 is the digital Rexroth multi-axis NC control in modular design. It consists of a master card with no, 2 or 4 axis controllers and can be extended with up to seven slave cards for four axes each, if necessary. It is thus the perfect solution for complex control tasks with up to 32 interpolatable axes. Using local Ethernet, more MAC8 can be connected. The MAC8 communicates with the superior PLC machine control via field bus (PROFIBUS DP or CAN) or via Ethernet. It has special hydraulic control characteristics and is able to control the movements of the machine or machine parts in a completely automatic manner and can thus also accept PLC tasks. Sensors and actuators can also be analyzed and/ or activated via CAN bus.

\section*{Areas of application:}
- Presses (tube forming, metal / ceramic, powder, plastic, deep drawing, glass presses, press brakes, die cushion controls, IHF (internal high pressure forming, etc.)
- Materials handling (container crane, balance crane, train/ truck lift, belt drive, etc.)
- Steelworks and rolling mill technology (continuous caster, curved casting machine, mold oscillation, roll stand, 3-roll bending machine, turn over cooling bed, flying shears, ladle car, molding plants, etc.)
- Testing technology (weld testing machine, shock absorber testing system, tube testing press, etc.)
- Special machinery (coal distributors, thick sheet turning equipment, engine turning system, etc.)

\section*{Process connection}

32 digital inputs, 24 digital outputs, PROFIBUS DP, CANopen, TCP-IP, UDP, PROFINET RT, EtherNet/IP

\section*{Connection / visualization}
- By means of "OPC server"
- By means of "Active X" elements
- Interfaces: RS485 or Ethernet

\section*{Programming}
- User programming with PC
- Extensive diagnosis and debugging tools
- Comfortable data administration on the PC
- High level language oriented
- 32 NC programs which can be executed in parallel
- High execution speed due to compiled programs
- Fast integer and real arithmetics
- Exponential and angle functions

\section*{Hydraulic axes}
- Measuring system Incremental or absolute (SSI)

Analog \(\pm 10 \mathrm{~V}\) and 4 to 20 mA , \(\pm 10 \mathrm{~mA}\) and \(\pm 20 \mathrm{~mA}\)
- Control output Analog \(\pm 10 \mathrm{~V}\) and 4 to 20 mA , \(\pm 10 \mathrm{~mA}\) and \(\pm 20 \mathrm{~mA}\)

\section*{Closed-loop control}
- Following controller
- State controller
- Path-dependant braking
- Synchronization controller up to 32 axes (different variants)
- Pressure / force controller

\section*{System overview}

Ordering code for system

Selection aid
\begin{tabular}{|l|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Part \\
Ordering code
\end{tabular} & Analog In & \begin{tabular}{c}
RS232 (V24) \\
RS485
\end{tabular} & CANopen & \begin{tabular}{c}
PROFINET RT \\
/ EtherNet/IP
\end{tabular} & \begin{tabular}{c}
PROFIBUS \\
DP
\end{tabular} & Analog I/O & Encoder plug \\
\hline AM 1 & X & X & X & & & & \\
\hline AM 2 & X & X & X & & & X & 2X \\
\hline AM 4 & X & & X & & & X & 4X \\
\hline PM 1 & X & X & X & & X & & \\
\hline PM 2 & X & X & X & & X & X & 2 X \\
\hline PM 4 & X & & X & & X & X & 4X \\
\hline EM 4 & X & & X & X & & X & \(\mathrm{4X}\) \\
\hline
\end{tabular}

Components
3
\begin{tabular}{|l|l|l|}
\hline Material no. & Type & Designation \\
\hline R901075726 & VT-MAC8-1X/K-AM1 & Master card without axis controller \\
\hline R901075728 & VT-MAC8-1X/K-AM2 & Master card with 2 axis controllers \\
\hline R901075730 & VT-MAC8-1X/K-AM4 & Master card with 4 axis controllers \\
\hline R901075732 & VT-MAC8-1X/K-PM1 & Master card with PROFIBUS DP, without axis controller \\
\hline R901075734 & VT-MAC8-1X/K-PM2 & Master card with PROFIBUS DP, with 2 axis controllers \\
\hline R901075738 & VT-MAC8-1X/K-PM4 & Master card with PROFIBUS DP, with 4 axis controllers \\
\hline R901275171 & VT-MAC8-1X/K-EM4 & Master card with PROFIBUS RT / EtherNet/P, with 4 axis controllers \\
\hline R901075752 & VT-MAC8-1X/K-AX4 & Slave card with 4 axis controllers \\
\hline R901075757 & VT-MAC8-1X/K-DUMMY & Blank location cover for a slot \\
\hline R901075714 & VT-MAC8-1X/K-RACK1 & Empty rack with one slot (master card) \\
\hline R901075722 & VT-MAC8-1X/K-RACK5 & Empty rack with 5 slots (1 master, 4 slaves) \\
\hline R901075725 & VT-MAC8-1X/K-RACK8 & Empty rack with 8 slots (1 master, 7 slaves) \\
\hline R901052075 & KABELSATZ MAC8/ABS/SF/3M & Cable absolute value encoder SSI (X2), 3 meters, open end \\
\hline R901052153 & KABELSATZ MAC8/INC/24V/SF3M & Cable incremental encoder 24V (X2), 3 meters, open end \\
\hline R901052152 & KABELSATZ MAC8/INC/5V/SF/3M & Cable incremental encoder 5V (X2), 3 meters, open end \\
\hline R901052141 & KABELSATZ MAC8/AE/SF/3M & Cable analog inputs (X4), 3 meters, open end \\
\hline R901052069 & KABELSATZ MAC8/AEA/SF/3M & Cable analog inputs/outputs (X1), 3 meters, open end \\
\hline R901052150 & KABELSATZ MAC8/DEA/SF/3M & Cable digital inputs/outputs (X5), 3 meters, open end \\
\hline R901074828 & KABELSATZ MAC8/PC/RS232/5M & Cable PC MAC8 RS232 interface (X3.4), 5 meters \\
\hline R901269556 & SYS-MAC8-2X-D/E & Installation CD for the MAC8 programming system \\
\hline
\end{tabular}

\section*{Software project planning}

\section*{Program creation with MACpro}
- Windows version with integrated editor with command highlighting
- Project group creation for managing the individual programs on the slots with automatic switch-over
- Global header files for joint definitions
- Programs can be organized in modules (files)
- Nesting depth for up to 50 subroutines
- Change-oriented compiling and transmission to the MAC8
- Reference list of the variables and subroutines used
- Automatic version comparison PC <-> MAC8
- Saving of different desktop settings
- Program stored in the flash

\section*{Debugging}
- Online help for "Syntax", "Tools" and "Keys"
- Tracing of program execution (Trace)
- Process variable tracing by means of trend
- Program view (View) with search functions
- Function level display (call hierarchy)
- 5 break points are managed
- Stop / start / continue and single step (single, step, stepover) of individual or all programs
- Saving of the memory image (program with data)

\section*{View of variables}
- All variable windows can be selected by means of "Hot keys" or the menu, flexible window size
- Configurable variable window (mix variables) with hexadecimal, decimal, binary and floating point representation. Easy transmission of any variable from the program view to the tracing window and structuring by means of comments
- Setup window with all axis-specific process variables
- System parameter assistant

\section*{Acquisition of measured data}
- 64 recording channels with start and stop trigger
- Recording option for all process variables
- Graphical and numeric presentation (DBF format) of the recorded channels
- Endless data recording (trend)

\section*{Commissioning functions}
- Inputs can be simulated
- Outputs can be set
- Analog output variables can be set
- Jog mode for controller optimization
- Activation / deactivation of individual controller components

\section*{Project-related management of the:}
- Programs
- Configurable programming user interface
- System parameters
- Measured data

\section*{MACpro system requirements:}
- IBM PC or compatible system
- Windows NT, Windows 2000, Win XP, Windows 7
- Processor from 300 MHz
- At least 256 MB RAM
- At least 100 MB of available hard disk capacity

The installation is effected from \(C D\)
(SYS-MAC8-2X-D/E with material no. R901269556)

\section*{Overview of the controller functions}

\section*{Position controller:}
- Following controller
- Substitutional closed-loop control (position / pressure)
- Force limitation in positive and negative direction Direction-dependent gain adjustment
- "Inflected" gain characteristic curve
- Fine positioning
- Residual voltage principle
- Compensation of zero point errors
- State feedback
- Command value feedforward
- Limitation of the control output via the NC program
- "Path-dependant braking"
- External controller function via NC program
- Following operation
- Velocity override
- Gain modification via the NC program possible
- Interpolation of up to 32 axes
- Pre-acceleration
- Force / path; force / time curves
- Position/ input value curves
- Coordinate transformation of the spatial axes

\section*{Overview of the controller functions (continued)}

\section*{State controller:}
- Velocity feedback
- Acceleration feedback
- Pressure feedback
- External feedback

\section*{Pressure / force controller:}
- PID controller
- I share can be switched via window
- Differential pressure evaluation
- P / Q pilot control
- Different modes for transition from position to force controller

\section*{Velocity controller:}
- PI controller
- I share switchable via window

\section*{Synchronization controller:}
- Synchronization of any groups with up to 32 axes, which can be changed during runtime
- Active synchronization with force limitation and/or parallel making way
- Passive synchronization, tilt compensation control, with definable average counterforce
- Synchronization offsets of the axes can be changed dynamically
- Axes can be dynamically added to or removed from the synchronized group (also during operation)
- Relative synchronization, also in opposite direction

\section*{Monitoring functions:}
- Dynamic following error monitoring
- Traversing range limits (electronic end switches)
- Cable break monitoring for incremental and SSI encoder
- Cable break monitoring for sensors with output 4 to 20 mA
- Valve monitoring
- Encoder voltage monitoring

\section*{NC interpreter}

The NC interpreter organizes the execution of the 32 parallel NC programs. In this connection, each program works in a sequential manner. Switch-over between the parallel programs is in each case effected after processing of one program line. In case of commands waiting for an event (e.g.: "WAIT", "POS"), the next program is activated immediately after the event request in order not to hinder execution of the
other programs. All system resources are available for all programs (I/O, axes, variables etc.). Programs can start, stop or delay each other. This concept allows for the perfect imaging of the sequence control of the machine in the NC program of the MAC8.

\section*{ECL-Win programming language}

\section*{Technical data}

\section*{Technical data (continued)}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Digital position transducers} & \\
\hline \multicolumn{3}{|l|}{\begin{tabular}{l}
- Incremental transducer \\
- Transducer with TTL output
\end{tabular}} \\
\hline Input voltage & \(\log 0\) & 0 to 1 V \\
\hline & \(\log 1\) & 2.8 to 5.5 V \\
\hline Input current & \(\log 0\) & -0.8 mA (with 0 V) \\
\hline & \(\log 1\) & 0.8 mA (with 5 V) \\
\hline Max. frequency referring to Ua 1 & \(f_{\text {max }}\) & \(250 \mathrm{kHz}, 24\) bit \\
\hline \multicolumn{3}{|l|}{SSI position transducers} \\
\hline \multicolumn{2}{|l|}{- Coding} & Gray-Code \\
\hline \multicolumn{2}{|l|}{- Data width} & Adjustable up to max. 28 bit \\
\hline - Line receiver (TTL) & \(f_{\text {max }}\) & 250 kHz \\
\hline \multirow[t]{2}{*}{- Input voltage} & \(\log 0\) & 0 to 1 V \\
\hline & \(\log 1\) & 2.5 to 5.5 V \\
\hline \multirow[t]{2}{*}{- Input current} & \(\log 0\) & -0.5 mA (with 0 V) \\
\hline & \(\log 1\) & 0.5 mA (with 5 V) \\
\hline \multicolumn{3}{|l|}{- Line driver} \\
\hline \multirow[t]{2}{*}{- Output voltage} & \(\log 0\) & 0 to 0.5 V \\
\hline & \(\log 1\) & 2.5 to 5.5 V \\
\hline Admissible operating temperature range & & 0 to \(50{ }^{\circ} \mathrm{C}\) \\
\hline Storage temperature range & & -20 to \(70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{3}{|l|}{Weight:} \\
\hline - Rack 1 & \(m\) & 1000 g \\
\hline - Rack 5 & \(m\) & 1800 g \\
\hline - Rack 8 & \(m\) & 2500 g \\
\hline - Master card & \(m\) & 400 g \\
\hline - Slave card & \(m\) & 350 g \\
\hline - Blank cover & \(m\) & 100 g \\
\hline
\end{tabular}

\section*{Pin assignment master card VT-MAC8}

Front plate shows: VT-MAC8-1X/K-PM1
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ X1a } \\
\hline RJ-45; 100BaseT Ethernet \\
\hline Pin & \\
\hline 1 & TPO+ \\
\hline 2 & TPO- \\
\hline 3 & TPI+ \\
\hline 4 & \(75 K-G N D\) \\
\hline 5 & \(75 K-G N D\) \\
\hline 6 & TPI- \\
\hline 7 & \(75 K-G N D\) \\
\hline 8 & 75K-GND \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ X1b } \\
\hline RJ-45; 10BaseT Ethernet \\
\hline Pin & \\
\hline 1 & TPO + \\
\hline 2 & TPO- \\
\hline 3 & TPI + \\
\hline 4 & n.c. \\
\hline 5 & n.c. \\
\hline 6 & TPI- \\
\hline 7 & n.c. \\
\hline 8 & n.c. \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline X4 & \multicolumn{2}{|l|}{Analog in} \\
\hline Pin & & Pin \\
\hline 1 & \(\mathrm{U}_{\text {in }}{ }^{1} \mathrm{C}\) & \\
\hline & \(\mathrm{U}_{\text {in }}{ }^{2} \mathrm{C}\) & 6 \\
\hline 2 & \(\mathrm{U}_{\mathrm{in}} 3_{\mathrm{C}}\) & \\
\hline & \(\mathrm{U}_{\text {in }} 4 \mathrm{C}\) & 7 \\
\hline 3 & AGND & \\
\hline & \(\mathrm{U}_{\text {in }} 1_{\mathrm{D}}\) & 8 \\
\hline 4 & \(\mathrm{U}_{\text {in }}{ }^{2} \mathrm{D}\) & \\
\hline & \(\mathrm{U}_{\text {in }} 3^{\text {d }}\) & 9 \\
\hline 5 & \(\mathrm{U}_{\text {in }} 4 \mathrm{D}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|l|}{ X6 } \\
\hline Pin & \\
\hline 1 & Shieldage supply \\
\hline 2 & GND \\
\hline 3 & +24 V \\
\hline
\end{tabular}

\begin{tabular}{|l|l|l|}
\hline \multicolumn{3}{|l|}{ X3.1 CANopen } \\
\hline Pin & & Pin \\
\hline 1 & n.c. & \\
\hline & n.c. & 6 \\
\hline 2 & CAN_Lx & \\
\hline & CAN_Hx & 7 \\
\hline 3 & GNDCANx & \\
\hline & n.c. & 8 \\
\hline 4 & n.c. & \\
\hline & n.c. & 9 \\
\hline 5 & n.c. & \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline \multicolumn{3}{|c|}{ X3.3 } \\
\hline \multicolumn{2}{l|}{ PROFIBUS DP } \\
\hline Pin & & Pin \\
\hline 1 & n.c. & \\
\hline & VP & 6 \\
\hline 2 & n.c. & \\
\hline & n.c. & 7 \\
\hline 3 & RxD/TxD -P & \\
\hline & RxD/TxD -N & 8 \\
\hline 4 & CNTR -P & \\
\hline & n.c. & 9 \\
\hline 5 & DGND & \\
\hline
\end{tabular}

Notice:
Please use straight
Profibus connector
\begin{tabular}{|c|l|c|}
\hline \multicolumn{3}{|c|}{ X3.4 } \\
\hline RS232 (V24) \\
\hline Pin & & Pin \\
\hline 1 & GND & \\
\hline & RxD & 6 \\
\hline 2 & TxD & \\
\hline \multicolumn{3}{|c|}{ RS485 } \\
\hline & GND & 7 \\
\hline 3 & 5 V & \\
\hline & RxD+ & 8 \\
\hline 4 & RxD- & \\
\hline & TxD+ & 9 \\
\hline 5 & TxD- & \\
\hline
\end{tabular}

Pin assignment master card VT-MAC8
Front plate shows: VT-MAC8-1X/K-PM2

\begin{tabular}{|c|c|c|c|c|c|}
\hline X5 & \multicolumn{5}{|c|}{Digital I/O} \\
\hline Pin & Description & Pin & Description & Pin & Description \\
\hline & & 22 & Reserved & & \\
\hline 43 & Reserved & & & 1 & Reserved \\
\hline & & 23 & In0 & & \\
\hline 44 & In2 & & & 2 & In1 \\
\hline & & 24 & In3 & & \\
\hline 45 & In5 & & & 3 & In4 \\
\hline & & 25 & In6 & & \\
\hline 46 & In8 & & & 4 & In7 \\
\hline & & 26 & In9 & & \\
\hline 47 & In11 & & & 5 & In10 \\
\hline & & 27 & In12 & & \\
\hline 48 & \(\ln 14\) & & & 6 & In13 \\
\hline & & 28 & In15 & & \\
\hline 49 & In17 & & & 7 & In16 \\
\hline & & 29 & In18 & & \\
\hline 50 & In20 & & & 8 & In19 \\
\hline & & 30 & In21 & & \\
\hline 51 & In23 & & & 9 & In22 \\
\hline & & 31 & In24 & & \\
\hline 52 & In26 & & & 10 & In25 \\
\hline & & 32 & In27 & & \\
\hline 53 & In29 & & & 11 & In28 \\
\hline & & 33 & In30 & & \\
\hline 54 & Out0 & & & 12 & In31 \\
\hline & & 34 & Out1 & & \\
\hline 55 & Out3 & & & 13 & Out2 \\
\hline & & 35 & Out4 & & \\
\hline 56 & Out6 & & & 14 & Out5 \\
\hline & & 36 & Out7 & & \\
\hline 57 & Out9 & & & 15 & Out8 \\
\hline & & 37 & Out10 & & \\
\hline 58 & Out12 & & & 16 & Out11 \\
\hline & & 38 & Out13 & & \\
\hline 59 & Out15 & & & 17 & Out14 \\
\hline & & 39 & Out16 & & \\
\hline 60 & Out18 & & & 18 & Out17 \\
\hline & & 40 & Out19 & & \\
\hline 61 & Out21 & & & 19 & Out20 \\
\hline & & 41 & Out22 & & \\
\hline 62 & 0 V & & & 20 & Out23 \\
\hline & & 42 & 0 V & & \\
\hline & & & & 21 & 0 V \\
\hline
\end{tabular}

\section*{Notice:}

The pins marked with "reserved" must not be connected.

\section*{Pin assignment master card VT-MAC8}

Front plate shows: VT-MAC8-1X/K-EM4

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{4}{|l|}{X1 Analog I/O on master card} \\
\hline Pin & & Pin & Description \\
\hline \multirow[t]{2}{*}{1} & n.c. & & \\
\hline & n.c. & 14 & \\
\hline \multirow[t]{2}{*}{2} & AGND & & Analog ground \\
\hline & n.c. & 15 & \\
\hline \multirow[t]{2}{*}{3} & n.c. & & \\
\hline & AGND & 16 & Analog ground \\
\hline \multirow[t]{2}{*}{4} & \(1 \mathrm{U}_{\text {in }} 1_{\text {A }}\) & & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{IU}_{\text {in }} 1_{B}\) & 17 & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{5} & \(1 \mathrm{Uin}_{\text {in }} \mathrm{A}_{\text {A }}\) & & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(1 \mathrm{IU}_{\text {in }}{ }^{\text {a }}\) B & 18 & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{6} & AGND & & Analog ground \\
\hline & \(1 \mathrm{U}_{\text {in }} 3_{\text {A }}\) & 19 & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{7} & \(1 \mathrm{IU}_{\text {in }} 3_{\mathrm{B}}\) & & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(1 \mathrm{IU}_{\text {in }} 4_{\text {A }}\) & 20 & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{8} & \(1 \mathrm{IU}_{\text {in }} 4_{\text {B }}\) & & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & AGND & 21 & Analog ground \\
\hline \multirow[t]{2}{*}{9} & \(\mathrm{U}_{\text {out }}{ }^{1}\) & & \(\pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{U}_{\text {out }}{ }^{2}\) & 22 & \(\pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{10} & \(\mathrm{U}_{\text {out }}{ }^{3}\) & & \(\pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{U}_{\text {out }}{ }^{4}\) & 23 & \(\pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{11} & AGND & & Analog ground \\
\hline & \(\mathrm{I}_{\text {out }}{ }^{1}\) & 24 & \(\pm 20 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{12} & \(\mathrm{I}_{\text {out }}{ }^{2}\) & & \(\pm 20 \mathrm{~mA}\) \\
\hline & \(\mathrm{I}_{\text {out }}{ }^{3}\) & 25 & \(\pm 20 \mathrm{~mA}\) \\
\hline 13 & \(\mathrm{I}_{\text {out }}{ }^{4}\) & & \(\pm 20 \mathrm{~mA}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{3}{|c|}{ X2.x } \\
\hline Pin & INC & SSI \\
\hline 1 & IUa 2 & \\
\hline 2 & & +CIk \\
\hline 3 & Ua 0 & \\
\hline 4 & / Ua 0 & \\
\hline 5 & Ua 1 & \\
\hline 6 & / Ua 1 & \\
\hline 7 & & -Clk \\
\hline 8 & Ua 2 & \\
\hline 9 & & -Data \\
\hline 10 & 0 V & 0 V \\
\hline 11 & & +Data \\
\hline 12 & Reserved & Reserved \\
\hline 13 & n. c. & n. c. \\
\hline 14 & Reserved & Reserved \\
\hline 15 & n. c. & n. c. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline \multicolumn{2}{|c|}{ X3.3 } \\
\hline \multicolumn{1}{l|}{ PROFINET RT / EtherNet/IP } \\
\hline Pin & \\
\hline 1 & TPO + \\
\hline 2 & TPI + \\
\hline 3 & TPO- \\
\hline 4 & TPI- \\
\hline
\end{tabular}

\section*{Notice:}

The pins marked with "reserved" must not be connected.

Pin assignment slave card VT-MAC8-1X/K-AX4

\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{X1} & \multicolumn{2}{|r|}{Analog 1/O on slave card} \\
\hline Pin & & Pin & Description \\
\hline \multirow[t]{2}{*}{1} & \(\mathrm{I}_{\text {in }} 1{ }_{\mathrm{C}}\) & & Current / voltage input \(\pm 20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{I}_{\text {in }}{ }^{\text {c }} \mathrm{C}\) & 14 & Current / voltage input \(\pm 20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{2} & AGND & & Analog ground \\
\hline & \(\mathrm{I}_{\text {in }} 3_{\mathrm{C}}\) & 15 & Current / voltage input \(\pm 20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{3} & \(\mathrm{I}_{\text {in }} 4_{\mathrm{C}}\) & & Current / voltage input \(\pm 20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & AGND & 16 & Analog ground \\
\hline \multirow[t]{2}{*}{4} & \(\mathrm{IU}_{\text {in }} 1_{\mathrm{A}}\) & & Current / voltage input \(0 \ldots . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(1 \mathrm{IU}_{\text {in }} 1_{\mathrm{B}}\) & 17 & Current / voltage input \(0 \ldots .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{5} & \(\mathrm{IU}_{\text {in }}{ }^{2} \mathrm{~A}\) & & Current / voltage input \(0 . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{IU}_{\text {in }} 2_{\text {B }}\) & 18 & Current / voltage input \(0 \ldots . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{6} & AGND & & Analog ground \\
\hline & \(1 \mathrm{U}_{\text {in }} 3_{\text {A }}\) & 19 & Current / voltage input 0... \(20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{7} & \(1 \mathrm{U}_{\text {in }} 3_{B}\) & & Current / voltage input \(0 \ldots .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{IU}_{\text {in }} 4_{\mathrm{A}}\) & 20 & Current / voltage input \(0 \ldots . .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{8} & \(\mathrm{IU}_{\text {in }} 4 \mathrm{~B}\) & & Current / voltage input \(0 \ldots .20 \mathrm{~mA} / \pm 10 \mathrm{~V}\) \\
\hline & AGND & 21 & Analog ground \\
\hline \multirow[t]{2}{*}{9} & \(\mathrm{U}_{\text {out }} 1\) & & \(\pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{U}_{\text {out }}{ }^{2}\) & 22 & \(\pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{10} & \(\mathrm{U}_{\text {out }}{ }^{3}\) & & \(\pm 10 \mathrm{~V}\) \\
\hline & \(\mathrm{U}_{\text {out }}{ }^{\text {4 }}\) & 23 & \(\pm 10 \mathrm{~V}\) \\
\hline \multirow[t]{2}{*}{11} & AGND & & Analog ground \\
\hline & \(\mathrm{I}_{\text {out }}{ }^{1}\) & 24 & \(\pm 20 \mathrm{~mA}\) \\
\hline \multirow[t]{2}{*}{12} & \(\mathrm{I}_{\text {out }}{ }^{2}\) & & \(\pm 20 \mathrm{~mA}\) \\
\hline & \(\mathrm{I}_{\text {out }}{ }^{\text {a }}\) & 25 & \(\pm 20 \mathrm{~mA}\) \\
\hline 13 & \(\mathrm{I}_{\text {out }}{ }^{4}\) & & \(\pm 20 \mathrm{~mA}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|l|l|}
\hline \multicolumn{2}{|l|}{ X2.x } & \multicolumn{2}{|c|}{ Encoder plug } \\
\hline Pin & INC & SSI \\
\hline 1 & /Ua 2 & \\
\hline 2 & & +CIk \\
\hline 3 & Ua 0 & \\
\hline 4 & / Ua 0 & \\
\hline 5 & Ua 1 & \\
\hline 6 & / Ua 1 & \\
\hline 7 & & -Clk \\
\hline 8 & Ua 2 & \\
\hline 9 & & -Data \\
\hline 10 & 0 V & 0 V \\
\hline 11 & & +Data \\
\hline 12 & Reserved & Reserved \\
\hline 13 & n. c. & n. c. \\
\hline 14 & Reserved & Reserved \\
\hline 15 & n. c. & n. c. \\
\hline
\end{tabular}
\begin{tabular}{|c|l|}
\hline S1 & \multicolumn{1}{|l|}{ Address } \\
\hline & Slot \\
\hline 2 & Slot 2 \\
\hline 3 & Slot 3 \\
\hline 4 & Slot 4 \\
\hline 5 & Slot 5 \\
\hline 6 & Slot 6 \\
\hline 7 & Slot 7 \\
\hline 8 & Slot 8 \\
\hline \(0-1\) & Not allowed \\
\hline \(9-\mathrm{F}\) & Not allowed \\
\hline
\end{tabular}

Notice:
Address the card according to the slot.

\section*{Notice:}

The pins marked with "reserved" must not be connected.

Unit dimensions (dimensions in mm)

VT-MAC8-1X/K-RACK5
System with 5 slots

VT-MAC8-1X/K-RACK1
System with 1 slot

\section*{VT-MAC8-1X/K-RACK8}

System with 8 slots

Unit dimensions (dimensions in mm)
VT-MAC8-1X/K-RACK1/5/8

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Sensors and signal transmitters}
\begin{tabular}{|c|c|c|c|c|}
\hline Designation & Type & Component series & Data sheet & Page \\
\hline \multicolumn{5}{|l|}{Pressure sensors} \\
\hline Pressure transducer for hydraulic applications & HM 20 & 2X & 30272 & 721 \\
\hline \multicolumn{5}{|l|}{Electronic pressure switches} \\
\hline Electronic pressure switch with integrated analog output & HEDE 10.../1/ & 2X & 30276 & 725 \\
\hline Electronic pressure switch with two switching outputs & HEDE 10.../2/ & 2X & 30278 & 731 \\
\hline Electronic pressure switch with two switching outputs & HEDE 11.../2/ & 1X & 30279 & 737 \\
\hline \multicolumn{5}{|l|}{Mechanical pressure switches} \\
\hline Hydro-electric pressure switch & HED 5 & 3 X & 50056 & 741 \\
\hline Hydro-electric pressure switch & HED 8 & 2 X & 50061 & 749 \\
\hline \multicolumn{5}{|l|}{Signal transmitters} \\
\hline Electronic signal transmitter, Single axis version & VT 10468 & 3 X & 29753 & 765 \\
\hline Electronic signal transmitter, Two axes version & VT 10406 & 3 X & 29754 & 771 \\
\hline Electronic signal transmitter, Three axes version & VT 10399 & 5X & 29755 & 779 \\
\hline
\end{tabular}

\section*{Pressure transducers \\ for hydraulic applications}

\section*{Type HM20}

\section*{Features 1}

Ordering code 2
Technical data 3
Unit dimensions 4
- Component series 2 X

\section*{C \\ c(UL) Us LITted}

\section*{Contents}

Electrical connection 4
- Masurement of pressures in hydraulic systems
- 6 measurement ranges up to 630 bar
- Sensor with thin film measuring cell
- Components that are in contact with the media are made of stainless steel
- Operational safety due to high bursting pressure, reversed polarity, overvoltage and short-circuit protection
- Accuracy class 0.5
- Excellent non-repeatability < 0.05 \%
- Wide operating temperature range -40 . \(+85{ }^{\circ} \mathrm{C}\)

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 01 & \multicolumn{3}{c}{02} & \multicolumn{3}{c}{04} \\
\hline HM20 & - & \(\mathbf{2 X}\) & / & & - & & \multicolumn{2}{c}{0} \\
\hline
\end{tabular}
\begin{tabular}{|c|l|c|}
\hline 01 & Pressure transducer & HM20 \\
\hline 02 & Component series 20 to 29 (20 to 29: Unchanged installation dimensions and pin assignments) & \(\mathbf{2 X}\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{6}{*}{03}} & & 50 bar \\
\hline & & & 100 bar \\
\hline & & & 250 bar \\
\hline & & & 315 bar \\
\hline & & & 400 bar \\
\hline & & & 630 bar \\
\hline
\end{tabular}
\begin{tabular}{|l|l|c|}
\hline \multirow{2}{*}{04} & Current output 4 to 20 mA & \(\mathbf{C}\) \\
\cline { 2 - 4 } & Voltage output 0.1 to 10 V & \(\mathbf{H}\) \\
\hline 05 & Connector, 4-pole, M12x1 & \\
\hline
\end{tabular}

\section*{Replacement seal ring}
\begin{tabular}{|l|l|}
\hline Designation & Material no. \\
\hline Seal ring NBR & R900012467 \\
\hline
\end{tabular}

Cable sets or mating connectors are not included in the scope of delivery; please order separately

Cable sets and mating connectors

Bosch Rexroth AG, RE 30272, edition: 2013-03

\section*{Technical data}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Input variables} \\
\hline Operating voltage \(U_{\text {S }}\) & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \hline 16 \text { to } 36 \text { VDC }{ }^{1)} \\
& 2.5 \mathrm{~V}(40 \text { to } 400 \mathrm{~Hz})
\end{aligned}
\]}} \\
\hline Residual ripple UPP & & & & & & \\
\hline Current consumption \(I_{\text {max }}\) & \multicolumn{6}{|l|}{\(\leq 12 \mathrm{~mA}\) (with voltage output)} \\
\hline Protection class & \multicolumn{6}{|l|}{III} \\
\hline Isolation resistance \(R\) & \multicolumn{6}{|l|}{> 100 (500 VDC)} \\
\hline Measurement range \(p_{\text {N }}[\mathrm{bar}]\) & 50 & 100 & 250 & 315 & 400 & 630 \\
\hline Overload protection \(p_{\text {max }}[\mathrm{bar}]\) & 100 & 200 & 500 & 630 & 800 & 1000 \\
\hline Bursting pressure \(p\) [bar] & 200 & 400 & 1000 & 1260 & 1600 & 2520 \\
\hline \multicolumn{7}{|l|}{Output parameters} \\
\hline \begin{tabular}{lr}
Output signal and admissible load \(R_{\mathrm{A}}\) & \(I_{\text {Sig }}\) \\
& \(U_{\text {Sig }}\) \\
\hline
\end{tabular} & \multicolumn{6}{|l|}{\[
\begin{aligned}
& 4 \text { to } 20 \mathrm{~mA} \\
& R_{\mathrm{A}}=\left(U_{\mathrm{S}}-8.5 \mathrm{~V}\right) / 0.0215 \mathrm{~A} \text { with } R_{\mathrm{A}} \text { in } \Omega \text { and } U_{\mathrm{S}} \text { in } \mathrm{V} \\
& 0.1 \text { to } 10 \mathrm{~V}, R_{\mathrm{A}}>2 \mathrm{k} \Omega \\
& \hline
\end{aligned}
\]} \\
\hline Setting time (10 to 90 \%) & \multicolumn{6}{|l|}{< 1 ms} \\
\hline Accuracy (characteristic curve deviation) & \multicolumn{6}{|l|}{< \(0.5 \%\) related to the complete measurement range, including non-linearity, hysteresis, zero point and end value deviation (corresponds to the measuring deviation according to IEC 61298-2)} \\
\hline \begin{tabular}{l}
Temperature coefficient (TC) for zero point and range \\
- within the nominal temperature range \\
- outside of the nominal temperature range
\end{tabular} & \multicolumn{6}{|l|}{\[
\begin{aligned}
& <0.1 \% / 10 \mathrm{~K} \\
& <0.2 \% / 10 \mathrm{~K} \\
& \hline
\end{aligned}
\]} \\
\hline Hysteresis & \multicolumn{6}{|l|}{< \(0.15 \%^{2)}\)} \\
\hline Non-repeatability & \multicolumn{6}{|l|}{< \(0.05 \%{ }^{\text {2) }}\)} \\
\hline Long-term drift (1 year) under reference conditions & \multicolumn{6}{|l|}{< 0.1 \%} \\
\hline \multicolumn{7}{|l|}{Environmental conditions} \\
\hline Nominal temperature range & \multicolumn{6}{|l|}{\(-20 \ldots+80^{\circ} \mathrm{C}\)} \\
\hline Ambient temperature range & \multicolumn{6}{|l|}{\(-40 \ldots+85^{\circ} \mathrm{C}\)} \\
\hline Storage temperature range & \multicolumn{6}{|l|}{\(-40 \ldots+100^{\circ} \mathrm{C}\)} \\
\hline Hydraulic fluid temperature range & \multicolumn{6}{|l|}{\(-40 \ldots+90^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{7}{|l|}{Other characteristics} \\
\hline Pressure port & \multicolumn{6}{|l|}{G1/4 according to DIN 3852 form E, seal ring according to DIN 3869-14} \\
\hline Housing materials Materials in contact with medium & \multicolumn{6}{|l|}{\[
\begin{aligned}
& \text { V4A (1.4404), PEI, HNBR } \\
& \text { 1.4542, NBR } \\
& \hline
\end{aligned}
\]} \\
\hline Pressure media & \multicolumn{6}{|l|}{HL, HLP, HFC, nitrogen \({ }^{3)}\), others upon request} \\
\hline \(\begin{array}{lll}\text { Tightening torque } & \text { Measurement ranges }<400 \mathrm{bar} & M_{\mathrm{A}} \\ & \text { Measurement ranges } \geq 400 \mathrm{bar} & M_{\mathrm{A}}\end{array}\) & \multicolumn{6}{|l|}{\[
\begin{aligned}
& 20 \ldots 25 \mathrm{Nm} \\
& 25 \ldots 3 \mathrm{Nm}
\end{aligned}
\]} \\
\hline Electrical connection & \multicolumn{6}{|l|}{4-pole M12 connector on the housing 4)} \\
\hline Protection class according to EN 60529 & \multicolumn{6}{|l|}{IP65/IP67 with mating connector correctly mounted and locked} \\
\hline Weight m m & \multicolumn{6}{|l|}{0.05 kg} \\
\hline Life cycle & \multicolumn{6}{|l|}{60 million load cycles or 60000 h} \\
\hline Shock resistance, mechanical, IEC 60068-2-27 & \multicolumn{6}{|l|}{\(15 \mathrm{~g} / 11 \mathrm{~ms}\) (\(3 \times\) positive / \(3 \times\) negative per axis)} \\
\hline Vibration resistance under resonance, IEC 60068-2-6 & \multicolumn{6}{|l|}{\(10 \ldots 2000 \mathrm{~Hz}, 10 \mathrm{~g}\) (20 sweeps, 1 octave/min)} \\
\hline \begin{tabular}{l}
Electromagnetic compatibility (EMC) \\
- DIN EN 61000-4-2 ESD \\
- DIN EN 61000-4-3 HF radiated \\
- DIN EN 61000-4-4 burst \\
- DIN EN 61000-4-5 surge \\
- DIN EN 61000-4-6 HF cable-propagated
\end{tabular} & \multicolumn{6}{|l|}{\[
\begin{array}{|l}
4 \mathrm{kV} \text { CD } / 8 \mathrm{kV} \text { AD } \\
10 \mathrm{~V} / \mathrm{m}(80 . . .2700 \mathrm{mHz}) \\
4 \mathrm{kV} \text { clamp } \\
1 \mathrm{kV} \text { signal for DC devices } \\
10 \mathrm{~V} \\
\hline
\end{array}
\]} \\
\hline Conformity & \multicolumn{6}{|l|}{CE} \\
\hline Further tests & \multicolumn{6}{|l|}{cULus-listed} \\
\hline
\end{tabular}

\footnotetext{
1) With cULus: Max. of 30 VDC is admissible
\({ }^{2)}\) Related to nominal temperature range
3) Maximum of 300 bar is admissible
\({ }^{4)}\) Recommendation: Use of shielded connection cable, see cable sets on page 2
}

\section*{Electrical connection}

4-pole M12 connector, view to connection side
\begin{tabular}{|c|c|c|c|}
\hline Voltage & & \multicolumn{2}{|l|}{Current (two-wire system)} \\
\hline & Values for \(U_{\mathrm{S}}, R_{\mathrm{A}}\) and \(U_{\text {Sig }}\), see page 3 & & Values for \(U_{\mathrm{S}}, R_{\mathrm{A}}\) and \(I_{\mathrm{sig}}\), see page 3 \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

1 Pressure port G1/4 male thread
2 Seal ring
3 4-pole M12 connector

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 93 52/18-0
documentation@boschrexroth.de
www.boschrexroth.de forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Service

\section*{Rexroth}

Bosch Group

\title{
Electronic pressure switch with integrated analogue output
}

Type HEDE 10.../1/

Component series 2X

Table of contents

\section*{Contents}

\section*{Page}

Features
Ordering code
Technical data
Pin assignment K41
Unit dimensions
Accessories

Features
- Suitable for measuring pressures and converting the measured values into electrical signal variables in hydraulic systems
- EMC properties allow the use of this pressure switch also in critical applications
- Ceramic / capacitive sensor
- Connecting cable with 4 -pin M12 plug on housing
- Accuracy class 1.0
- Connection thread G1/4
- Parts in contact with media are made of stainless steel, ceramic and FKM
- Compact design
- One switching output and one analogue output

Ordering code

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|c|}
\hline Input variables & & & & \\
\hline Auxiliary energy \(U_{0}\) & \multicolumn{4}{|l|}{18 to 36 VDC} \\
\hline Current consumption & \multicolumn{4}{|l|}{\(<50 \mathrm{~mA}\)} \\
\hline Measuring range \(\quad p_{N}\) in bar & 100 & 250 & 400 & 600 \\
\hline Overload safety \(\quad p_{\max }\) in bar & 300 & 400 & 600 & 800 \\
\hline Burst pressure \(\quad p\) in bar & 650 & 850 & 1000 & 1200 \\
\hline Output variables & & & & \\
\hline Analogue output U & \multicolumn{4}{|l|}{0 to 10 VDC minimum load \(2000 \Omega\)} \\
\hline 1 & \multicolumn{4}{|l|}{\(4-20 \mathrm{~mA}\left(\mathrm{max} . \operatorname{load}\left(U_{0}-10\right) \times 50 \Omega\right)\)} \\
\hline Rise time (10 to \(90 \%\)) & \multicolumn{4}{|l|}{3 ms} \\
\hline Switching output Current carrying capacity & \multicolumn{4}{|l|}{250 mA} \\
\hline Response time & \multicolumn{4}{|l|}{\(<3 \mathrm{~ms}\) (with response time set to dAP \(=3\))} \\
\hline Max. switching frequency & \multicolumn{4}{|l|}{170 Hz (at dAP \(=3\))} \\
\hline Characteristic curve deviation: (initial point setting according to DIN16086) & \multicolumn{4}{|l|}{< \(\pm 0.5\) \%} \\
\hline \begin{tabular}{l}
Temperature coefficient within nominal temperature range \\
- Highest TC of zero point \\
- Highest TC of span
\end{tabular} & \multicolumn{4}{|l|}{\[
\begin{array}{|l|l|}
\hline 0.2 \% / 10 k \\
0.2 \% / 10 k \\
\hline
\end{array}
\]} \\
\hline Hysteresis & \multicolumn{4}{|l|}{< \(\pm 0.1\) \%} \\
\hline Repeatability & \multicolumn{4}{|l|}{0.1 \%} \\
\hline Long-term drift under reference conditions (6 months) & \multicolumn{4}{|l|}{0.05 \%} \\
\hline \multicolumn{5}{|l|}{Ambient conditions} \\
\hline Limit temperature range ง & \multicolumn{4}{|l|}{-20 to \(+80^{\circ} \mathrm{C}\)} \\
\hline Storage temperature range ง & \multicolumn{4}{|l|}{-40 to \(+100^{\circ} \mathrm{C}\)} \\
\hline Medium temperature range \(৩\) & \multicolumn{4}{|l|}{-25 to \(+80^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{5}{|l|}{Mechanical data} \\
\hline Pressure port & \multicolumn{4}{|l|}{G1/4} \\
\hline Electrical connection & \multicolumn{4}{|l|}{M12 plug-in connection} \\
\hline
\end{tabular}

Technical data (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Programming options & \multicolumn{4}{|l|}{Hysteresis / window; normally open / normally closed; pickup, drop-out delay; attenuation; display unit / analogue output: voltage or current} \\
\hline Pressure stages & 100 & 250 & 400 & 600 \\
\hline Switching point SP bar & 1.0 ... 100 & 2 ... 250 & 4 ... 400 & 6 ... 600 \\
\hline Release position, rP bar & 0.5 ... 99.5 & 1... 249 & 2 ... 398 & 3 ... 597 \\
\hline In increments of bar & 0.5 & 1 & 2 & 3 \\
\hline Adjustable response time of a switch- Response time (dAP) ms ing output and resulting switching frequency & \multicolumn{4}{|l|}{\[
\begin{gathered}
3 \text {... } 500 \\
170 . . .1
\end{gathered}
\]} \\
\hline Adjustable delay time dS, dr s & \multicolumn{4}{|l|}{0.0; 0.2 ... 50.0} \\
\hline Environmental compatibility & \multicolumn{4}{|l|}{} \\
\hline Type of protection / housing to IEC 60529 & \multicolumn{4}{|l|}{IP67} \\
\hline Class of protection EN 50178 & \multicolumn{4}{|l|}{III} \\
\hline Insulation resistance \(\mathrm{M} \Omega\) & \multicolumn{4}{|l|}{> 100 (500 VDC)} \\
\hline Resistane to shock to IEC 60068-2-27 g & \multicolumn{4}{|l|}{\(50 \mathrm{~g}, 11 \mathrm{~ms}\)} \\
\hline Resistance to vibration to IEC 60068-2-6 g & \multicolumn{4}{|l|}{\(20 \mathrm{~g}, 10\)... 2000 Hz} \\
\hline Switching cycles min. & \multicolumn{4}{|l|}{100 million / 50 million with pressure stage 600 bar} \\
\hline Approval & \multicolumn{4}{|l|}{cULus} \\
\hline EMC \begin{tabular}{r}
EN \(61000-4-2\) ESD \\
\\
EN \(61000-4-3\) HF radiated \\
EN \(61000-4-4\) burst \\
EN \(61000-4-5\) surge \\
\\
EN 61000-4-6 HF cable-bound
\end{tabular} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& 4 / 8 \mathrm{kV} \\
& 10 \mathrm{~V} / \mathrm{m} \\
& 2 \mathrm{kV} \\
& 0.5 / 1 \mathrm{kV} \\
& 10 \mathrm{~V}
\end{aligned}
\]} \\
\hline Housing material & \multicolumn{4}{|l|}{EPDM/X (Santoprene); FKM; PBTP (Pocan); PC (Macrolon); V2A (1.4301)} \\
\hline Materials in contact with the medium & \multicolumn{4}{|l|}{V2A (1.4305); ceramic; FKM} \\
\hline Connection & \multicolumn{4}{|l|}{M12 plug-in connection, gold-plated contacts} \\
\hline
\end{tabular}

\section*{Pin assignment K41}

Detail of plug on the device: 2

\begin{tabular}{|l|l|l|}
\hline 1 & BN & Brown \\
\hline 2 & WH & White \\
\hline 3 & BU & Blue \\
\hline 4 & BK & Black \\
\hline
\end{tabular}

Unit dimensions (nominal dimensions in mm)

Accessories
Cable sockets:

Hydraulic fitting:

\section*{Accessories (continued)}

\section*{Mounting clamp for HEDE 10}
\begin{tabular}{l|l}
Designation & Material no. \\
\hline Mounting clamp & R900786138
\end{tabular}

\section*{Protective cap for HEDE 10}
\begin{tabular}{l|l}
Designation & Material no. \\
\hline Protective cap M12 & R900786141
\end{tabular}

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49\) (0) \(9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Rexroth}

Bosch Group

\section*{Electronic pressure switch with two switching outputs}

\section*{Type HEDE 10.../2/}

Component series 2X

Table of contents

\section*{Contents}

Features
Ordering code
Technical data
Pin assignment K41
Unit dimensions
Accessories

Features
- Suitable for measuring pressures and converting the measured values into electrical signal variables in hydraulic systems
- EMC properties allow the use also in critical applications
- Sensor ceramic / capacitive
- Connecting cable with 4-pin M12 plug on the housing
- Accuracy class 1.0
- Connection thread G1/4
- Parts that are in contact with the medium are made of stainless steel, ceramics or FKM
- Compact design
- Two switching outputs

\section*{Ordering code}

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Input variables} & & & & \\
\hline Auxiliary power & \(U_{B}\) & \multicolumn{4}{|l|}{18 to 36 VDC} \\
\hline Current consumption & 1 & \multicolumn{4}{|l|}{\(<50 \mathrm{~mA}\)} \\
\hline Measuring range & \(p_{\mathrm{N}}\) in bar & 100 & 250 & 400 & 600 \\
\hline Overload safety & \(p_{\text {max }}\) in bar & 300 & 400 & 600 & 800 \\
\hline Burst pressure & \(p\) in bar & 650 & 850 & 1000 & 1200 \\
\hline \multicolumn{6}{|l|}{Output variables} \\
\hline Switching output Current carrying capacity & 1 & \multicolumn{4}{|l|}{250 mA} \\
\hline Response time & \(t\) & \multicolumn{4}{|l|}{\(<3 \mathrm{~ms}\) (with set response time dAP \(=3\))} \\
\hline Max. switching frequency & \(t\) & \multicolumn{4}{|l|}{170 Hz (at dAP \(=3\))} \\
\hline Characteristic curve deviation: (initial point setting to DIN16086) & & \multicolumn{4}{|l|}{< \(\pm 0.5\) \%} \\
\hline \begin{tabular}{l}
Temperature coefficient in the nominal temperature range \\
- Highest TC of the zero point \\
- Highest TC of the range
\end{tabular} & & \multicolumn{4}{|l|}{\[
\begin{array}{|l|l|l|}
\hline 0.2 \% / 10 k \\
0.2 \% / 10 k \\
\hline
\end{array}
\]} \\
\hline Hysteresis & & \multicolumn{4}{|l|}{\(< \pm 0.25\) \%; 0.5 \% for pressure stage 600 bar} \\
\hline Repeatability & & \multicolumn{4}{|l|}{\(< \pm 0.1\) \%} \\
\hline Long-term drift under reference conditions (6 months) & & \multicolumn{4}{|l|}{0.05 \%} \\
\hline \multicolumn{6}{|l|}{Ambient conditions} \\
\hline Limit temperature range & \(\vartheta\) & \multicolumn{4}{|l|}{\[
\begin{aligned}
& -20 \text { to }+80^{\circ} \mathrm{C} \text { at } U_{\mathrm{B}}<32 \mathrm{~V} \\
& -20 \text { to }+45^{\circ} \mathrm{C} \text { at } U_{\mathrm{B}}>36 \mathrm{~V} \\
& \hline
\end{aligned}
\]} \\
\hline Storage temperature range & \(\vartheta\) & \multicolumn{4}{|l|}{-40 to \(+100^{\circ} \mathrm{C}\)} \\
\hline Fluid temperature range & \(\vartheta\) & \multicolumn{4}{|l|}{-25 to \(+80^{\circ} \mathrm{C}\)} \\
\hline \multicolumn{6}{|l|}{Mechanical data} \\
\hline Pressure port & & \multicolumn{4}{|l|}{G1/4} \\
\hline Electrical connection & & \multicolumn{4}{|l|}{M12 plug-in connection} \\
\hline
\end{tabular}

Technical data (continued)
\begin{tabular}{|c|c|c|c|c|}
\hline Programming options & \multicolumn{4}{|l|}{Hysteresis / window; n.o. / n.c; pick-up, drop-out delay; damping; unit of indication / diagnosis output} \\
\hline Pressure stages & 100 & 250 & 400 & 600 \\
\hline Switching point SP bar & 1.0 ... 100 & 2 ... 250 & 4 ... 400 & 6... 600 \\
\hline Resetting point, rP bar & 0.5 ... 99.5 & 1... 249 & 2 ... 398 & 3 ... 597 \\
\hline in increments of bar & 0.5 & 1 & 2 & 3 \\
\hline Adjustable response time of a switch- Response time (dAP) ms ing output and resulting switching frequency & \multicolumn{4}{|l|}{\begin{tabular}{l}
\[
3 \ldots 500
\] \\
170 ... 1
\end{tabular}} \\
\hline Adjustable delay dS, dr s & \multicolumn{4}{|l|}{0.0; 0.2 ... 50.0} \\
\hline Environmental compatibility & \multicolumn{4}{|l|}{} \\
\hline Type of protection / housing to IEC 60529 & \multicolumn{4}{|l|}{IP67} \\
\hline Protection class to EN 50178 & \multicolumn{4}{|l|}{III} \\
\hline Insulation resistance \(\mathrm{M} \Omega\) & \multicolumn{4}{|l|}{> 100 (500 VDC)} \\
\hline Resistance to shock to IEC 60068-2-27 g & \multicolumn{4}{|l|}{\(50 \mathrm{~g}, 11 \mathrm{~ms}\)} \\
\hline Resistance to vibration g & \multicolumn{4}{|l|}{\(20 \mathrm{~g}, 10-2000 \mathrm{~Hz}\))} \\
\hline Switching cycles min. & \multicolumn{4}{|l|}{100 million / 50 million with pressure stage 600 bar} \\
\hline Approval & \multicolumn{4}{|l|}{cULus} \\
\hline EMC \begin{tabular}{r}
EN \(61000-4-2\) ESD \\
\\
EN \(61000-4-3\) HF radiated \\
EN \(61000-4-4\) burst \\
EN \(61000-4-5\) surge \\
\\
EN 61000-4-6 HF cable-bound
\end{tabular} & \multicolumn{4}{|l|}{\[
\begin{aligned}
& \hline 4 / 8 \mathrm{kV} \\
& 10 \mathrm{~V} / \mathrm{m} \\
& 2 \mathrm{kV} \\
& 0,5 / 1 \mathrm{kV} \\
& 10 \mathrm{~V} \\
& \hline
\end{aligned}
\]} \\
\hline Housing material & \multicolumn{4}{|l|}{EPDM/X (Santoprene); FKM; PBTP (Pocan); PC (Macrolon); V2A (1.4301)} \\
\hline Materials in contact with the medium & \multicolumn{4}{|l|}{V2A (1.4305); ceramics; FKM} \\
\hline Connection & \multicolumn{4}{|l|}{M12 plug-in connection, gold-plated contacts} \\
\hline
\end{tabular}

\section*{Pin assignment K41}

Two switching outputs:
low-side switching (NPN)

Detail view on the plug of the device:

high-side switching (PNP)

\begin{tabular}{|l|l|l|}
\hline 1 & BN & Brown \\
\hline 2 & WH & White \\
\hline 3 & BU & Blue \\
\hline 4 & BK & Black \\
\hline
\end{tabular}

Unit dimensions (nominal dimensions in mm)

Accessories
Cable sockets:

Hydraulic fitting:
\begin{tabular}{l|l}
Designation & Material no. \\
\hline AB 20-28 & R900012451
\end{tabular}

\section*{Accessories (continued)}

Fixing clamp for HEDE10
\begin{tabular}{l|l}
Designation & Material no. \\
\hline Fixing clamp & R900786138
\end{tabular}

\section*{Protective cap for HEDE10}
\begin{tabular}{l|l}
Designation & Material no. \\
\hline Protective cap M12 & R900786141
\end{tabular}

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49\) (0) \(9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\title{
Electronic pressure switch with two switching outputs
}

Component series 1 X
Maximum operating pressure 400 bar

\section*{Table of contents}

\section*{Contents}

Features
Ordering code
Function, electrical connection, setting
Technical data
Unit dimensions
Accessories: Plug-in connectors

Features
- Sensing of hydraulic pressures and their output as electrical switching signals
- 100 bar and 400 bar versions available
- High burst pressure range
- Simple adjustment of switching points by means of two, optimally readable adjustment rings
- Mechanical locking against unauthorised manipulations of the switching points
- Parts that come into contact with the medium are made of stainless steel or FPM
- Connection thread G1/4
- High long-term stability
- Electrical connection by means of 4-pin M12 connector
- Two exclusive-OR switching outputs
- Indication of switching status and readiness for operation
- Compact design

\section*{Ordering code}

\section*{Function, electrical connection, adjustment}

The electronic pressure switch senses the system pressure and switches the two outputs OUT1 (Pin 4) / OUT2 (Pin 2) according to the exclusive-OR principle.
- In the case of rising pressure, OUT1 closes / OUT2 opens, when the selected set value has been reached.
- In the case of falling presusre, OUT1opens / OUT2 closes, when the selected reset value has been reached.

Wire colours of Bosch Rexroth plug-in connectors:
\(1=\mathrm{BN}\) (brown)
\(2=\mathrm{WH}\) (white)
\(3=B U\) (blue)
\(4=B K\) (black)
See also page 4, Accessories.

Technical data (for applications outside these parameters, please consult us!)
General
\begin{tabular}{lr|l}
\hline Weight & kg & Approx. 0.09 \\
\hline Installation position & & Optional \\
\hline Ambient temperature range & \({ }^{\circ} \mathrm{C}\) & -20 to +80 \\
\hline Storage temperature range & \({ }^{\circ} \mathrm{C}\) & -40 to +100 \\
\hline
\end{tabular}

\section*{Hydraulic}
\begin{tabular}{lc|c|c}
\hline HEDE 11A1-1X/... & bar & 5 to 100 & \(\ldots 400\) \\
\hline Switching point Set & bar & 3 to 98 & 20 to 400 \\
\hline Switching point Reset & bar & 100 & 12 to 392 \\
\hline Maximum operating pressure & bar & 200 & 400 \\
\hline Permissible overload pressure & bar & 1000 & 600 \\
\hline Burst pressure & \({ }^{\circ} \mathrm{C}\) & -25 to +80 & 1600 \\
\hline Hydraulic fluid temperature range & & V4A (1.4404), FPM & \\
\hline Material in contact with medium & &
\end{tabular}

\section*{Electrical}
\begin{tabular}{|c|c|}
\hline Auxiliary power VDC & 18 to 36 \\
\hline Current consumption mA & <25 \\
\hline Current carrying capacity per switching output mA & 250 mA \\
\hline Short-circuit protection & Clocked \\
\hline Overload-proof & Yes \\
\hline Reverse polarity protection & Yes \\
\hline Voltage drop V & <2 \\
\hline Switching frequency Hz & 100 \\
\hline Adjustment accuracy \% & \(< \pm 2.5\) of final measuring range value \\
\hline Repeatability \% & \(< \pm 0.5\) of final measuring range value \\
\hline Temperature influence \% & \(< \pm 0.5\) of final measuring range value \(/ 10 \mathrm{~K}\) from 0 to \(+80^{\circ} \mathrm{C}\) \\
\hline Switching cycles, minimum & 50 million \\
\hline Type of protection to EN 60529 & IP 67 \\
\hline Protection class to EN 50178 & III \\
\hline Insulation resistance \(\mathrm{M} \Omega\) & \(>100\) (500 V DC) \\
\hline EMC \begin{tabular}{r}
EN 61000-4-2 ESD \\
EN 61000-4-3 HF radiated \\
EN \(61000-4-4\) burst \\
EN 61000-4-6 HF conducted
\end{tabular} & \[
\begin{array}{|l|}
\hline 4 \mathrm{kV} \text { CD } / 8 \mathrm{kV} \mathrm{AD} \\
10 \mathrm{~V} / \mathrm{m} \\
2 \mathrm{kV} \\
10 \mathrm{~V} \\
\hline
\end{array}
\] \\
\hline UL approval & UL 508 \\
\hline
\end{tabular}

\section*{Note:}

To meet the "limited voltage current" requirements according to UL, the device must be supplied from an electrically isolated source and an overcurrent protection feature must be provided.

Unit dimensions (nominal dimensions in mm)

\section*{Accessories: Plug-in Connectors}

\section*{Bosch Rexroth AG}

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) \(9352 / 18-0\)
Fax \(\quad+49\) (0) \(9352 / 18-2358\)
documentation@boschrexroth.de
www.boschrexroth.de
(C) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Hydraulics

Bosch Group

\section*{Type HED 5}

Component series 3 X
Maximum operating pressure 400 bar CE, CCC, UL

\section*{Table of contents}

Contents
Features
Ordering code
Mating connectors
Function, section, symbol
Technical data
Switching pressure differential
Device dimensions
Electrical connection

\section*{Features}
- 4 pressure ratings
- Electrical connection
- with large cubic connector
- with M12 \(\times 1\) connector
- Micro switch with NC/NO contact function
- Potential-free switching of currents from 1 mA to 2 A
- UL approval
- CCC approval (except for MT version)

\section*{Ordering code}

\({ }^{1)}\) Mating connectors, separate order, see below

\section*{Mating connectors}

For connection "K14"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{For details and more mating connectors see data sheet 08006} & & \multicolumn{5}{|c|}{} \\
\hline & \multicolumn{6}{|c|}{Material no.} \\
\hline & without circuitry & \multicolumn{5}{|c|}{with circuitry (indicator light) AC/DC, \(-20 \ldots .+60^{\circ} \mathrm{C}\)} \\
\hline & \(240 \mathrm{~V},-40 \ldots+125^{\circ} \mathrm{C}\) & \(6 . .144 \mathrm{~V}\) & \(16 . . .30 \mathrm{~V}\) & \(36 . . .60 \mathrm{~V}\) & \(90 \ldots 130 \mathrm{~V}\) & 180 ... 240 V \\
\hline Color black & R901017012 & R901017030 & R901017048 & R901017032 & R901017035 & R901017037 \\
\hline
\end{tabular}

For connection "K35"
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{For details and more mating connectors see data sheet 08006} & & ETHunn & \\
\hline & \multicolumn{3}{|c|}{Material no.} \\
\hline & 4-pole, M12 x 1 with screw connection,
\[
-40 \ldots+85^{\circ} \mathrm{C}
\] & 4-pole, M12 x 1 with PUR cable, 3 m long, \(-25 \ldots+85^{\circ} \mathrm{C}\) & 4-pole, M12 x 1 with screw connection, angled, \(-40 \ldots+85^{\circ} \mathrm{C}\) \\
\hline Color black & R900031155 & R900064381 & R900082899 \\
\hline
\end{tabular}

\section*{Function, section, symbol}

Hydro-electric pressure switches of type HED 5 are piston type pressure switches.
They basically consist of housing (1), installation kit with piston (2), compression spring (3), adjustment element (4) and micro switch (5).
The pressure to be monitored acts on the piston (2). The latter is supported by the spring plate (6) and acts against the continuously adjustable force of the compression spring (3). The spring plate (6) transmits the movement of the piston (2) onto the micro switch (5). This switches the electric circuit on or off, depending on the circuit set-up.

\section*{Installation information:}

To increase the life cycle, pressure switches are to be mounted free of shocks and suitable measures are to be taken to dampen hydraulic pressure shocks.

\section*{Symbol}

Type HED 5...K14

Type HED 5...K35

Technical data (For applications outside these parameters, please consult us!)
general
\begin{tabular}{|c|c|c|}
\hline Weight & kg & 0.2 \\
\hline Installation & & Any \\
\hline Ambient tem & & -30 to +50 (NBR seals) -20 to +50 (FKM seals) -40 to +50 (MT version) \\
\hline Sine test ac & EN 60068-2-6:1996-05 & \(10 \ldots 2000 \mathrm{~Hz}\), max. \(10 \mathrm{~g}, 10\) double cycles \\
\hline Transport s & to DIN EN 60068-2-27:1995-03 & \begin{tabular}{l}
Half-sine \(15 \mathrm{~g} / 11 \mathrm{~ms}\), \\
\(3 x\) in positive direction, \(3 x\) negative direction \\
(a total of 6 single shocks per axis)
\end{tabular} \\
\hline Noise test & N EN 60068-2-64:1995-08 & \(20 . .2000 \mathrm{~Hz}, 14 \mathrm{~g}_{\mathrm{RMS}}\), 24 h \\
\hline Conformity & CE & \begin{tabular}{l}
- DIN EN 61058-1:2008-09-05 \\
- IEC 60947-5-1:2010-04 \\
- DIN EN 60529:2000-09
\end{tabular} \\
\hline & UL & UL 508 17th edition File No E223220 \\
\hline & CCC & \begin{tabular}{l}
- EN 61058-1:1993 \\
- IEC 60947-5-1
\end{tabular} \\
\hline
\end{tabular}

\section*{hydraulic}
\begin{tabular}{|c|c|c|c|c|}
\hline Pressure rating & 50 & 100 & 200 & 350 \\
\hline \multicolumn{5}{|l|}{Maximum operating pressure} \\
\hline NBR/FKM seals bar & 350 & 350 & 350 & 400 \\
\hline MT version bar & 315 & 315 & 315 & 315 \\
\hline Pressure adjustment range (decreasing) bar & 5... 50 & 10... 100 & 15... 200 & 25... 350 \\
\hline Pressure differential per rotation \({ }^{1)}\) bar & ~10 & \(\approx 17\) & \(\approx 38\) & \(\approx 60\) \\
\hline Hydraulic fluid & \multicolumn{4}{|l|}{Mineral oil (HL, HLP) according to DIN \(51524^{2}\)); fast biodegradable hydraulic fluids according to VDMA 24568 (see also data sheet 90221); HETG (rape seed oil) \({ }^{2 \text { 2); }}\) HEPG (polyglycols) \({ }^{3)}\); HEES (synthetic esters) \({ }^{3)}\); HVLP \({ }^{4)}\); HFC \({ }^{5)}\); other hydraulic fluids upon request} \\
\hline Hydraulic fluid temperature range \({ }^{\circ} \mathrm{C}\) & \multicolumn{4}{|l|}{-30 to +80 (NBR seals) -20 to +80 (FKM seals) -40 to +80 (MT version)} \\
\hline Viscosity range \(\mathrm{mm}^{2} / \mathrm{s}\) & \multicolumn{4}{|l|}{10 to 800} \\
\hline Maximum permitted degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c) & \multicolumn{4}{|l|}{Class 20/18/15 \({ }^{\text {6 }}\)} \\
\hline Load cycles & \multicolumn{4}{|l|}{\(\geq 4\) millions} \\
\hline
\end{tabular}

\footnotetext{
1) Direction of rotation:
- Clockwise \(\rightarrow\) set pressure increase
- Counterclockwise \(\rightarrow\) set pressure decrease
\({ }^{2}\)) Suitable for NBR and FKM seals and for MT version
\({ }^{3}\)) Only suitable for FKM seals
\({ }^{4)}\) Suitable for MT version
\({ }^{5}\)) Only suitable for NBR seals
}
6) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the life cycle of the components.
For the selection of the filters see www.boschrexroth.com/filter.

Technical data (For applications outside these parameters, please consult us!)
electric
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Electrical connection / mating connector} & K14 & EN 175301-803, 3-pole + PE \\
\hline & K35 & IEC 61076-2-101, M12 x 1, A-coding, 4-pole \\
\hline \multirow[t]{2}{*}{Maximum connection cross-section (mating connector)} & K14 & 1.5 \\
\hline & K35 & 0.75 \\
\hline \multirow[t]{2}{*}{Line entry (mating connector)} & K14 & M16 \(\times 1.5\) \\
\hline & K35 & M10 \(\times 1.5\) \\
\hline \multirow[t]{2}{*}{Protection class according to EN 60529} & K14 & IP 65 with mating connector mounted and locked \\
\hline & K35 & IP 67 with mating connector mounted and locked \\
\hline Maximum switching frequency & 1/h & 4800 \\
\hline Switching accuracy (repetition accuracy) & & < \(\pm 1 \%\) of the set pressure \\
\hline Switch & & According to VDE 0630-1/DIN EN 61058-1 \\
\hline Transition resistance & \(\mathrm{m} \Omega\) & < 50 \\
\hline Insulation coordination & & Overvoltage category 3 \\
\hline Contamination & & Degree of contamination 3 \\
\hline Bounce time ON & ms & < 5 \\
\hline OFF & ms & < 5 \\
\hline Minimum current & mA & 1.0 with 24 V DC \\
\hline Maximum current & A & 0.5 with 50 V DC, inductive 0.2 with 125 V DC, inductive 0.1 with 250 V DC, inductive 2.0 with 250 V AC \\
\hline
\end{tabular}

Switching power
\begin{tabular}{c|c|c|c}
\hline Switching cycles & Voltage \(\boldsymbol{U}\) in V & Ohmic load max. in A & Inductive load, max. in A \\
\hline 2 million & 250, AC & 2 A for 2 million switching cycles & \(0.5 \mathrm{~A}, \cos \varphi=0.6\) for 2 million switching cycles \\
\hline 2 million & 24, DC & 2 A for 2 million switching cycles & 0.5 A for 2 million switching cycles \\
\hline 5 million & \(24, \mathrm{DC}\) & 5.0 mA for 5 million switching cycles & - \\
\hline
\end{tabular}

\section*{Notice:}

All variants can be unloaded to \(\boldsymbol{p}_{\text {min }}=0\) bar.
(Observe the switching pressure differential!)

Switching pressure differential (measured with HLP46, \(\cup_{\text {oil }}=40^{\circ} \mathrm{C} \pm 5^{\circ} \mathrm{C}\))

\section*{Notice:}

The switching pressure differential may increase within the course of the life cycle due to the deterioration of the oil quality and the number of load cycles.

\section*{Device dimensions (dimensions in mm)}

1 Adjustment element
2 Plug-in connection according to IEC 61076-2-101 (connection "K35")
3 Plug-in connection according to EN 175301-803 (connection "K14")
4 Mating connector without circuitry
5 Mating connector with circuitry
6 Space required to remove the mating connector
7 Seal ring (connection bore of the counterpart: max. Ø6)

Valve mounting screws (separate order) 4 hexagon socket head cap screws ISO 4762-M4X45-10.9-fIZn-240h-L
(friction coefficient \(\mu_{\text {total }}=0.09\) to 0.14) Tightening torque \(\boldsymbol{M}_{\mathrm{A}}=2 \mathrm{Nm} \pm 10 \%\) Material no. R913000370

\section*{Electrical connection}
\begin{tabular}{l}
"K14" without indicator light \\
\hline
\end{tabular}
c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Hydro-electric pressure switch}

\section*{Type HED 8}

Component series 2 X
Maximum operating pressure 630 bar CE, CCC, UL

RE 50061/02.12
Replaces: 07.06

\section*{Table of contents}

\section*{Contents}

\section*{Features}

Ordering code
Function, sections, symbol
Technical data
Characteristic curves Switching pressure differential
Unit dimensions
Installation information
Ordering code: Sandwich plate size 6
Symbols, variant no.: Sandwich plate size 6
Unit dimensions: Sandwich plate size 6
Ordering code: Sandwich plate size 10
Symbols, variant no.: Sandwich plate size 10
Unit dimensions: Sandwich plate size 10
Electrical connection
Page
1
2
3

Mating connectors

\section*{Features}
- For subplate mounting/pipeline installation
- For flange connection according to ISO 16873
- As vertical stacking element in connection with sandwich plates according to ISO 4401
- 5 pressure ratings
- 4 adjustment types:
- Spindle with/without protective cap
- Spindle with scale, with/without protective cap
- Rotary knob with scale
- Lockable rotary knob with scale
- Electrical connection
- with large cubic connector
- with M12 \(\times 1\) connector
- Micro switch with NC/NO contact function
- Potential-free switching of currents from 1 mA to 2 A
- UL approval for pressure ranges up to 350 bar

\section*{Ordering code}

1) Sandwich plate for vertical stacking, separate order see accessories
\({ }^{2)}\) Not admissible for vertical stacking, not with low-temperature seals, without UL approval
\({ }^{3)}\) Mating connectors, separate order, see accessories
\({ }^{4)}\) H-key, material no. R900008158, is included in the scope of delivery
\({ }^{5)}\) The exact setting of the switching pressure is only possible using a pressure gauge (scale is used as orientation)

\section*{Accessories}
- Sandwich plates for the vertical stacking see page 12 and 14.
- Mating connectors for the electrical connection see page 16.

\section*{Function, sections, symbol}

The hydro-electric pressure switch type HED 8 is a piston type pressure switch. It basically comprises of housing (1), installation kit with piston (2), compression spring (3), adjustment element (4) and micro switch (5).
If the pressure to be monitored is below the set pressure, the micro switch (5) is operated. The pressure to be monitored is applied via the nozzle (7) at the piston (2). The piston (2) is supported by the spring plate (6) and acts against the continuously adjustable force of the compression spring (3). The spring plate (6) transmits the movement of the piston (2) onto the micro switch (5) and releases the latter when the set pressure is reached. This switches the electric circuit on or off, depending on the circuit set-up. The mechanical positive stop of the spring plate (6) protects the micro switch (5) in case of a sudden pressure drop from mechanical destruction and, in case of overpressure, prevents solid compression of the compression spring (3).

\section*{Notice:}

In order to increase the service life, the pressure switch should be mounted with low vibrations and protected from hydraulic pressure surges.

\section*{Symbol}

Type HED 8 OH-2X/...K14 Type HED 8 OH-2X/...K14S

Type HED 8 OA-2X/...K14KW
Type HED 8 OA-2X/...K14KS

Technical data (For applications outside these parameters, please consult us!)

\section*{general}
\begin{tabular}{|c|c|}
\hline Weight kg & 0.8 \\
\hline Installation position & Any \\
\hline Ambient temperature range & \[
\begin{array}{|l|}
\hline-25 \text { to }+50 \text { (NBR seals) } \\
-20 \text { to }+50 \text { (FKM seals) } \\
-40 \text { to }+50 \text { (low-temperature seals) } \\
\hline
\end{array}
\] \\
\hline Sine test according to DIN EN 60068-2-6:1996-05 & \(5 . .2000 \mathrm{~Hz}\), max. \(10 \mathrm{~g}, 10\) double cycles \\
\hline Transport shock according to DIN EN 60068-2-27:1995-03 & \(15 \mathrm{~g} / 11 \mathrm{~ms}\) \\
\hline Bump test according to DIN EN 60068-2-29:1995-03 & \(25 \mathrm{~g} / 6 \mathrm{~ms}\) \\
\hline Noise test according to DIN EN 60068-2-64:1996-05 & \(20 . .2000 \mathrm{~Hz}, 10 \mathrm{~g}_{\mathrm{RMS}}\), 30 min \\
\hline Conformity CE & DIN EN 61058-1: 2008-09-05 IEC 60947-5-1: 2010-04 DIN EN 60529: 2000-09 \\
\hline UL & UL 508 17th edition File No E223220 \\
\hline CCC & EN 61058-1:1993 IEC 60947-5-1 \\
\hline
\end{tabular}

\section*{hydraulic}
\begin{tabular}{|c|c|c|c|c|c|}
\hline Pressure rating bar & 50 & 100 & 200 & 350 & 630 \\
\hline \multicolumn{6}{|l|}{Maximum operating pressure} \\
\hline NBR/FKM seals bar & 350 & 350 & 350 & 400 & 630 \\
\hline MT version bar & 315 & 315 & 315 & 315 & - \\
\hline Pressure adjustment range (decreasing) bar & 5... 50 & 10... 100 & 15... 200 & 25... 350 & 40... 630 \\
\hline Pressure differential per rotation \({ }^{1)}\) bar & \(\approx 19\) & \(\approx 35\) & \(\approx 77\) & \(\approx 120\) & \(\approx 214\) \\
\hline Hydraulic fluid & \multicolumn{5}{|l|}{Mineral oil (HL, HLP) according to DIN \(51524^{2}\)); fast biodegradable hydraulic fluids according to VDMA 24568 (see also RE 90221); HETG (rape seed oil) \({ }^{2}\)); HEPG (polyglycols) \({ }^{3)}\); HEES (synthetic esters) \({ }^{3)}\); HVLP \({ }^{4)}\); HFC \({ }^{5)}\); other hydraulic fluids upon request} \\
\hline Hydraulic fluid temperature range \({ }^{\circ} \mathrm{C}\) & \multicolumn{5}{|l|}{\[
\begin{array}{|l|}
\hline-25 \text { to }+80 \text { (for NBR seals) } \\
-20 \text { to }+80 \text { (for FKM seals) } \\
-40 \text { to }+80 \text { (low-temperature seals) } \\
\hline
\end{array}
\]} \\
\hline Viscosity range \(\mathrm{mm}^{2} / \mathrm{s}\) & \multicolumn{5}{|l|}{10 to 800} \\
\hline Maximum permitted degree of contamination of the hydraulic fluid - cleanliness class according to ISO 4406 (c) & \multicolumn{5}{|l|}{Class 20/18/15 \({ }^{6}\)} \\
\hline Load cycles & \multicolumn{5}{|l|}{\(\geq 5\) million} \\
\hline
\end{tabular}
1) Direction of rotation:
- Clockwise \(\rightarrow\) Set pressure increase
- Anticlockwise \(\rightarrow\) Set pressure decrease
2) Suitable for NBR and FKM seals
\({ }^{3}\)) Suitable only for FKM seals
\({ }^{4)}\) Suitable for low-temperature seals
\({ }^{5)}\) Suitable only for NBR seals
6) The cleanliness classes specified for the components must be adhered to in hydraulic systems. Effective filtration prevents faults and at the same time increases the service life of the components.
For the selection of the filters see www.boschrexroth.com/filter.

Technical data (For applications outside these parameters, please consult us!)

\section*{electric}
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{2}{*}{Electrical connection / mating connector} & K14 & EN 175301-803, 3-pole + PE \\
\hline & K35 & IEC 61076-2-101, M12 x 1, A-coding, 4-pole \\
\hline \multirow[t]{2}{*}{Protection class according to EN 60529} & K14 & IP 65 with mating connector mounted and locked \\
\hline & K35 & IP 67 with mating connector mounted and locked \\
\hline Maximum switching frequency & 1/h & 7200 \\
\hline Switching accuracy (repetition accuracy) & & < \(\pm 1 \%\) of the set pressure \\
\hline Switches & & According to VDE 0630-1/DIN EN 61058-1 \\
\hline Transition resistance & \(\mathrm{m} \Omega\) & < 50 \\
\hline Insulation coordination & & Overvoltage category 3 \\
\hline Contamination & & Degree of contamination 3 \\
\hline \multirow[t]{2}{*}{Bounce time} & ms & < 5 \\
\hline & ms & < 5 \\
\hline Minimum current & mA & 1.0 with 24 V DC \\
\hline Maximum current & A & 0.5 with 50 V DC, inductive 0.2 with 125 V DC, inductive 0.1 with 250 V DC, inductive 2.0 with 250 V AC \\
\hline
\end{tabular}

Switching power
\begin{tabular}{c|c|c|c}
\hline Switching cycles & Voltage \(\boldsymbol{U}\) in \(\mathbf{V}\) & Ohmic load max. in A & Inductive load max. in A \\
\hline 2 million & \(250, \mathrm{AC}\) & 2 A for 2 million switching cycles & 0.5 A, cos. \(\varphi=0.6\) for 2 million switching cycles \\
\hline 2 million & \(24, \mathrm{DC}\) & 2 A for 2 million switching cycles & 0.5 A for 2 million switching cycles \\
\hline 5 million & \(24, \mathrm{DC}\) & 5.0 mA for 5 million switching cycles & - \\
\hline
\end{tabular}

Characteristic curves Switching pressure differential

Pressure rating 50

Pressure rating 200

Pressure rating 630

Lower switching pressure in bar \(\rightarrow\)

Pressure rating 100

Pressure rating 350

Notice:
The switching pressure differential may increase within the course of the service life due to the deterioration of the oil quality and the number of load cycles.

Unit dimensions: Type HED 8 ...K14 (dimensions in mm)

Unit dimensions: Type HED 8 ...K35 (dimensions in mm)

Item explanations see page 9

Type HED 8 OP...

Required surface quality of the device contact surface (with version "OH" and "OP")

\section*{Unit dimensions}

\section*{Item explanations:}

1 Adjustment type "KW"
2 Adjustment type "KS"
3 Adjustment type "-"
4 Adjustment type "S"
5 Adjustment type "A"
6 Adjustment type "AS"
7 Seal ring
8 Space required to remove the key
9 Space required to remove the mating connector
10 Hexagon SW27 (with adjustment type "KS")
11 Internal hexagon SW10
12 Mating connector without circuitry for connection "K14" (separate order, see page 16)
13 Mating connector with circuitry for connection "K14" (separate order, see page 16)
14 Mating connector for connection "K35" (separate order see page 16)
15 Mating connector suitable for "K35", angled (separate order see page 16)
16 Mating connector for connection "K35", with cable (separate order see page 16)

17 Valve mounting screws
for type HED 8 OH... (separate order)
2 hexagon socket head cap screws ISO 4762-M5 x 55-10.9-fIZn-240h-L
Friction coefficient \(\mu_{\text {total }}=0.09\) to 0.14 , tightening torque \(\boldsymbol{M}_{\mathrm{A}}=6^{+0.5} \mathrm{Nm}\), material no. R913000261
18 Maximum diameter of the connection bore of the counterpart (type HED 8 OH...)
19 Maximum diameter of the connection bore of the counterpart (type HED 8 OP...)
20 Valve mounting screws for type HED 8 OA... and ...OP... (separate order) 2 hexagon socket head cap screws ISO 4762 - M5 x \(50-10.9-\mathrm{fIZn}-240 \mathrm{~h}-\mathrm{L}\)
Friction coefficient \(\mu_{\text {total }}=0.09\) to 0.14 , tightening torque \(M_{\mathrm{A}}=7^{+0.5} \mathrm{Nm}\), material no. R913000064

Installation information: Type HED 8 OH... in vertical stacking size 6 (dimensions in mm)

1 Pressure switch HED 8 OH ... for use in stacking assemblies (can be assembled staggered by \(4 \times 90^{\circ}\)) The mounting option of the pressure switch depends on the set-up of the next stacking assembly subplate.
2 Sandwich plate type HSZ 06A... for use of the pressure switch as stacking element (see page 12)
3 Space required to remove the key
4 Space required to remove the mating connector
\begin{tabular}{|l|c|c|c|}
\hline Mating connector & H1 & H2 & H3 \\
\hline \begin{tabular}{l}
"K14" connection \\
without circuitry
\end{tabular} & 87 & 65 & 15 \\
\hline \begin{tabular}{l}
"K14" connection \\
with circuitry
\end{tabular} & 92 & 70 & 15 \\
\hline "K35" connection, angled & 92 & 70 & 10 \\
\hline "K35" connection, straight & 111 & 89 & 10 \\
\hline
\end{tabular}

Installation information: Type HED 8 OH... in vertical stacking size 10 (dimensions in mm)

4
1 Pressure switch HED 8 OH ... for use in stacking assemblies (can be assembled staggered by \(4 \times 90^{\circ}\)) The mounting option of the pressure switch depends on the set-up of the next stacking assembly subplate.
2 Sandwich plate type HSZ 10A... for use of the pressure switch as stacking element (see page 14)
3 Space required to remove the key
4 Space required to remove the mating connector
\begin{tabular}{|l|c|c|c|}
\hline Mating connector & H1 & H2 & H3 \\
\hline \begin{tabular}{l}
"K14" connection \\
without circuitry
\end{tabular} & 100 & 65 & 15 \\
\hline \begin{tabular}{l}
"K14" connection \\
with circuitry
\end{tabular} & 105 & 70 & 15 \\
\hline "K35" connection, angled & 105 & 70 & 10 \\
\hline "K35" connection, straight & 124 & 89 & 10 \\
\hline
\end{tabular}

Ordering code：Sandwich plate size 6 （separate order）

Symbols，variant no．：Sandwich plate size 6 （1）＝component side，（2）＝plate side）
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{} & \multicolumn{8}{|c|}{Pressure switch effective in channel ．．．} \\
\hline \multirow[b]{3}{*}{Variant number} & Plate height in mm／ weight in kg & \begin{tabular}{|l|l|l|}
\hline & & \\
\hline 1
\end{tabular} & \begin{tabular}{r|r}
1 \\
\hline
\end{tabular} & & （ \({ }_{\text {A }}{ }^{(1)}\) & \begin{tabular}{l|}
\hline 1 \\
\hline
\end{tabular} & ［ & \({ }_{A}{ }^{\text {a }}\)（1）\({ }^{(1)}{ }^{\text {a }}\) & \begin{tabular}{l|}
\hline \\
\hline \\
\hline
\end{tabular} \\
\hline & 40.5 ／ 0.8 & \multicolumn{2}{|l|}{608} & \multicolumn{3}{|c|}{609} & \multicolumn{3}{|c|}{601} \\
\hline & \(120 / 3\) & \multicolumn{2}{|l|}{627} & \multicolumn{3}{|c|}{628} & \multicolumn{3}{|c|}{620} \\
\hline \multirow[b]{3}{*}{Variant number} & & \begin{tabular}{|l|l|l|}
\hline & & \\
\hline 1\()^{\prime}\) \\
\hline\(P\) & & \\
\hline
\end{tabular} & T1 & \begin{tabular}{|l|}
\hline \\
\hline P \\
\hline
\end{tabular} & \({ }_{A}\left({ }^{(2)}{ }_{B}{ }^{(1)}\right.\) & \begin{tabular}{l|}
\hline \\
\hline
\end{tabular} & ｜\({ }_{\square}\) & \({ }_{\text {A }}{ }^{\text {（2）}}\)（1）\({ }_{\text {B }}\) & T1 \\
\hline & 40.5 ／ 0.8 & \multicolumn{2}{|l|}{602} & \multicolumn{3}{|c|}{603} & \multicolumn{3}{|c|}{604} \\
\hline & \(120 / 3\) & \multicolumn{2}{|l|}{621} & \multicolumn{3}{|c|}{622} & \multicolumn{3}{|c|}{623} \\
\hline \multirow[b]{3}{*}{Variant number} & & \begin{tabular}{|l|l|l|}
\hline & & \\
\hline
\end{tabular} & T & 号。 & A \({ }_{\text {A }}\)（1）\({ }^{(2)}{ }^{\text {（2）}}\) & \begin{tabular}{r|r|}
\hline \\
\hline
\end{tabular} & 为 & & \begin{tabular}{l|}
\hline \\
\hline \\
\hline
\end{tabular} \\
\hline & 40.5 ／ 0.8 & \multicolumn{2}{|l|}{605} & \multicolumn{3}{|c|}{606} & \multicolumn{3}{|c|}{607} \\
\hline & \(120 / 3\) & \multicolumn{2}{|l|}{624} & \multicolumn{3}{|c|}{625} & \multicolumn{3}{|c|}{626} \\
\hline \multirow[b]{3}{*}{Variant number} & & \begin{tabular}{|l|l|l|}
\hline & & \\
\hline \(1{ }^{(1)}\) \\
\hline\(P\) & & \\
\hline
\end{tabular} & ＋ & \begin{tabular}{|l|}
\hline \\
\hline
\end{tabular} & & T & & & T \\
\hline & 40.5 ／ 0.8 & \multicolumn{2}{|l|}{610} & \multicolumn{3}{|c|}{611} & \multicolumn{3}{|c|}{612} \\
\hline & \(120 / 3\) & \multicolumn{2}{|l|}{629} & \multicolumn{3}{|c|}{630} & \multicolumn{3}{|c|}{631} \\
\hline \multirow[b]{3}{*}{Variant number} & & & \begin{tabular}{r|r}
\hline \\
\hline
\end{tabular} & & & & & & \\
\hline & 40.5 ／ 0.8 & \multicolumn{2}{|l|}{613} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{3}{|l|}{\multirow[t]{2}{*}{}} \\
\hline & － & \multicolumn{2}{|l|}{－} & & & & & & \\
\hline
\end{tabular}

Unit dimensions: Sandwich plate size 6 (dimensions in mm)
Type HED 8 OH... as vertical stacking element (up to 350 bar)

1 Seal ring
2 Through hole for valve mounting
3 Screw-on surface for pressure switch
4 Plate height 40.5 mm or 120 mm , optional
5 Porting pattern according to ISO 4401-03-02-0-05

Required surface quality of the plate contact surface

Ordering code: Sandwich plate size 10 (separate order)

Symbols, variant no.: Sandwich plate size 10 (1) = component side, (2) = plate side)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & \multicolumn{9}{|c|}{Pressure switch effective in channel ...} \\
\hline & Weight in kg & TA. P & \({ }_{A}{ }^{(2)}{ }^{(1)}{ }^{\text {a }}\), & [& \begin{tabular}{|l|l|}
\hline \hline & \\
\hline TAPP \\
\hline
\end{tabular} & \(\left.{ }_{A}\right)^{(1)}{ }^{(2)}{ }_{B}\) & [& 价 & \({ }_{A}{ }^{(1)}{ }^{(2)}{ }^{\text {a }}\), & [1] \\
\hline Variant number & 2 & & 601 & & & 602 & & & 603 & \\
\hline & & \(\prod_{\text {TA }}{ }^{\text {P }}\) & & [1] & \(\prod_{\text {TAAP }} \|^{\text {P }}\) & & \begin{tabular}{l|}
\hline 1 \\
TB
\end{tabular} & & A \({ }_{\text {A }}\left(1{ }^{(1)}\right.\) & \begin{tabular}{l|l|}
\hline \\
\hline TB
\end{tabular} \\
\hline Variant number & 2 & & 604 & & & 605 & & & 606 & \\
\hline & & \(\prod_{\text {TA }} \overbrace{\text { P }}\) & \({ }_{A}{ }^{(1)}{ }^{(1)}{ }^{\text {(1) }}\) & [1] & T \({ }_{\text {TA }}\) & \({ }_{A}{ }^{\text {a }}\) (1) \({ }^{(2)}{ }_{B} \mid\) & [| & TAP & \({ }_{4}{ }^{(1)}{ }^{(1)}{ }^{(2)}\) & \begin{tabular}{l|l|}
\hline \\
\hline TB
\end{tabular} \\
\hline Variant number & 2 & & 607 & & & 608 & & & 609 & \\
\hline & & T \({ }_{\text {TA }}\) & & TB & & & TB & To & \(\left.{ }_{A}\right)^{(1)}{ }^{(2)}{ }_{B}\) & TB \\
\hline Variant number & 2 & & 610 & & & 611 & & & 612 & \\
\hline
\end{tabular}

Unit dimensions: Sandwich plate size 10 (dimensions in mm)
Type HED 8 OH... as vertical stacking element (up to 350 bar)

1 Seal ring
2 Through hole for valve mounting
3 Screw-on surface for pressure switch
4 Porting pattern according to ISO 4401-05-04-0-05

Required surface quality of the plate contact surface

Electrical connection
\begin{tabular}{l}
"K14" without indicator light \\
\hline
\end{tabular}

\section*{Mating connectors}

For connection "K14"
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[t]{4}{*}{For details and more mating connectors see data sheet 08006} & & \multicolumn{5}{|c|}{} \\
\hline & \multicolumn{6}{|c|}{Material no.} \\
\hline & without circuitry & \multicolumn{5}{|c|}{with circuitry (indicator light) \(\mathrm{AC} / \mathrm{DC},-20 \ldots+60^{\circ} \mathrm{C}\)} \\
\hline & \(240 \mathrm{~V},-40 \ldots+125{ }^{\circ} \mathrm{C}\) & 6 ... 14 V & \(16 . .30 \mathrm{~V}\) & \(36 . . .60 \mathrm{~V}\) & \(90 \ldots 130 \mathrm{~V}\) & \(180 . .240 \mathrm{~V}\) \\
\hline Color black & R901017012 & R901017030 & R901017048 & R901017032 & R901017035 & R901017037 \\
\hline
\end{tabular}

For connection "K35"
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{3}{*}{For details and more mating connectors see data sheet 08006} & & ETHundurn & \\
\hline & \multicolumn{3}{|c|}{Material no.} \\
\hline & 4-pole, M12 x 1 with screw connection, \(-40 \ldots+85^{\circ} \mathrm{C}\) & 4-pole, M12 x 1 with PUR cable, 3 m long, \(-25 \ldots+85^{\circ} \mathrm{C}\) & 4-pole, M12 x 1 with screw connection, angled, \(-40 \ldots+85^{\circ} \mathrm{C}\) \\
\hline Color black & R900031155 & R900064381 & R900082899 \\
\hline
\end{tabular}

\footnotetext{
Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
}
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Rexroth}

Bosch Group

\section*{Electronic signal transmitter}

\section*{Type VT 10468}

\section*{Series 3X \\ Single axis version}

\section*{Overview of contents}

\section*{Contents}

Features
Ordering details 2
Function2

Engineering guidelines 2
Technical data
Cable allocation
Characteristic curves
Zero position, directional and dead-man contact
Switch in the lever
Circuit example
4

Unit dimensions

\section*{Features}

Contained within the VT 10468-3X electronic signal transmitter are the electronic and mechanical components which are used to convert the lever movement into a proportional electrical voltage.
- Sensitive control due to low operating forces
- Integrated evaluation electronics
\(- \pm 15\) V DC supply voltage
- Replacable gaiter
- Switched off if there is a cable break in the supply cables
- Polarity protection

\section*{Options:}
- Dead-man switch in the hand lever
- Additional controls possible via various switches fitted into the hand lever
- Can be held in any position by means of a friction brake
- The zero point may be mechanically locked
- Directional contacts for electrical monitoring of the hand lever movement

\section*{Ordering details}

\section*{Function}

\section*{Mechanics}

The simple robust mechanism consists of a control lever mounted in a swivel bearing. By deflecting the lever, the setting of a plastic track potentiometer is changed. Dependent upon the model, the control lever is automatically spring returned to the neutral position or held in any position by a friction brake.
A mechanical detent can also be fitted into the hand lever. The mechanism is protected by a rubber gaiter.

\section*{Zero position, directional and dead-man contacts}

In order to be able to electrically monitor the direction of lever movement and the zero position, a switch can be fitted per half axis. This switch closes when the lever is moved between \(\pm 5 \%\) to \(\pm 10 \%\) of the maximum travel (referred to the output signal of \(\pm 10 \mathrm{~V}\)).
The transducer can also be fitted with a dead-man switch. This is operated by pressing the upper half of the hand lever (at right angles to the plane of installation).
When these functions are required, they are connected via a 2nd non-screened cable.

\section*{Electronics}

The plastic track potentiometer is connected in series with an impedance converter, which ensures that the control curve remains within the specified limits, even with varying loading on the control output. The electronics also carry out other protective functions. Should a cable break in the \(\pm 15 \mathrm{~V}\) lines occur, then the supply to the electronics is automatically switched off internally. The electrical connection is via multi-core screened cable.
The combination of plastic track potentiometer and impedance converter ensures that a long service life is achieved.

\section*{Engineering guidelines}

\footnotetext{
Attention: If the transmitter is installed in a fully isolated manner, then the transmitter housing must be earthed by a seperate cable!
}

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Electronics & \(U\) & \\
\hline Supply voltage & \(I\) & Approx. 30 mA \\
\hline Current consumption & \(U\) & Max. \(\pm 10 \mathrm{~V}\) \\
\hline Control outputs & \(I\) & Max. \(\pm 5 \mathrm{~mA}\) \\
- Output voltage & & \(2 \mathrm{~A}, \mathrm{Max} .30 \mathrm{VDC}\) (ohmic load) \\
- Output current & \(I_{\mathrm{S}}\) & 2 A, medium blowing characteristics \\
\hline Switched contacts & & \\
\hline Fuse & \(\alpha\) & Approx. \(20^{\circ}\) from the spring centre position to the end position \\
\hline Mechanics & (when operated in the X direction)
\end{tabular}

\section*{Cable allocation}

Colour of the connecting cables (cable 1 - screened):
\begin{tabular}{|c|c|c|}
\hline \multirow[t]{3}{*}{Supply lines:} & Red & +15 V \\
\hline & Black & M0 (measured zero) \\
\hline & Blue & -15 V \\
\hline \multirow[t]{2}{*}{Signal lines:} & White & M0 (measured zero) \\
\hline & Pink & X axis \\
\hline \multirow[t]{2}{*}{Screen:} & Yellow/green & Housing transmitter \\
\hline & Transparent & Screen \\
\hline \multirow[t]{2}{*}{Notes:} & \multicolumn{2}{|l|}{- The cable screen is not connected internally!} \\
\hline & - If the transmitte manner, then th connected to e & is installed in a fully isolated e transmitter housing must be arth! \\
\hline
\end{tabular}

Colours of the connecting cables (cable 2 - non screened):
\begin{tabular}{lll}
Feed cable: & Blue & \\
Directional contacts: & Grey/Pink & \(X_{A}\)
\end{tabular}

\section*{Dead-man contact: Grey}

Zero position contact: Black \(\quad \mathrm{X}\) axis

\section*{Characteristic curves}

\section*{\(X\) axis}

\section*{Zero position, directional and deadman contacts}

\section*{Switch in the lever}

\section*{Pressure switch and push button}

Rocker switch and rocker switch with detent

Colours of the connecting cable (cable 2 - non screened):
Feed cable: Violet
Pressure operated switch and push button: White
Rocker switch and rocker switch with detent: Brown

Unit dimensions (dimensions in mm)

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) \(9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Rexroth}

Bosch Group

\section*{Electronic signal transmitter}

\section*{Type VT 10406}

Series 3X
Two axes version

\section*{Overview of contents}

\section*{Contents}

\section*{Features}

Ordering details 2
Function2

Engineering guidelines 3

Technical data
Cable allocation
Characteristic curves
Zero position, directional and dead-man contact
Switch in the lever
Circuit example
Unit dimensions

\section*{Features}

Contained within the VT 10406-3X electronic signal transmitter are the electronic and mechanical components which are used to convert the lever movement into two independent proportional signals. Due to the design of the lever joint safe operation of only one axis is also guaranteed.
- Sensitive control due to low operating forces
- Integrated evaluation electronics
\(- \pm 15\) V DC supply voltage
- Replacable gaiter
- Switched off if there is a cable break in the supply cables
- Polarity protection

\section*{Options:}
- Dead-man switch in the hand lever
- Additional controls are possible via various switches fitted into the hand lever
- Can be held in any position by means of friction brakes in the \(X\) and \(Y\) axes
- The zero point may be mechanically locked
- Directional contacts for electrical monitoring of the hand lever movement

\section*{Ordering details}

\section*{Function}

\section*{Mechanics}

The simple robust mechanism consists of a control lever mounted in a swivel bearing. Two plastic track potentiometers are adjusted, these are orientated in relation to the associated axis. When the control lever is released, springs return to its neutral position. The mechanical components are protected by means of a gaiter. The transmitter can be fitted with a friction brake on both axes which makes it possible to hold the control lever in any position. When the actuation of only one axis is permissible a cross-form of gate can be fitted. (simultaneous actuation of both axes is thereby not possible).

\section*{Zero position, directional and dead-man contacts}

In order to be able to electrically monitor the direction of lever movement and the zero position, a contact can be fitted per half axis. This contact closes when the lever is moved out of its neutral position within the range of \(\pm 5 \%\) to \(\pm 10 \%\) (referred to the output signal of \(\pm 10 \mathrm{~V}\)).
The transducer can also be fitted with a dead-man switch. This is operated by pressing the upper half of the hand lever (at right angles to the plane of installation).
When these functions are required, they are connected via a 2nd non-screened cable.

\section*{Electronics}

The plastic track potentiometer is connected in series with an impedance converter, which ensures that the control curve remains within the specified limits, even with varying loading on the control output. The electronics also carry out other protective functions. Should a cable break in the \(\pm 15 \mathrm{~V}\) supply lines occur, then the supply to the transducer is automatically switched off internally. The electrical connection is via a multi-core screened cable.

The combination of plastic track potentiometer and impedance converter ensures that a long service life is achieved.

\section*{Engineering guidelines}

Attention: If the transmitter is installed in a fully isolated manner, then the transmitter housing must be earthed by a separate cable!

Techicnal data (for applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Elektronics} & \\
\hline Supply voltage & \(U\) & \(\pm 15\) VDC (\(\pm 1 \%\)) stabilised \\
\hline Current consumption & 1 & Approx. 40 mA \\
\hline \begin{tabular}{l}
Control outputs \\
- Output voltage \\
- Output current
\end{tabular} & 4
1 & \[
\begin{aligned}
& \text { Max. } \pm 10 \mathrm{~V} \\
& \text { Max. } \pm 5 \mathrm{~mA}
\end{aligned}
\] \\
\hline Switched contact & & 2 A , max. 30 VDC (ohmic load) \\
\hline Fuse & \(I_{s}\) & 2 A , medium blowing characteristics \\
\hline Mechanics & & \\
\hline Lever displacement angle & \(\alpha\) & Approx. \(20^{\circ}\) from the spring centred position to the end position (when operated in the X or Y directions) \\
\hline Operating force & F & \begin{tabular}{l}
Start value approx. 7 N \\
Final value approx. 16 N
\end{tabular} \\
\hline \begin{tabular}{l}
Protection to EN 60529 \\
- Above the mounting plane \\
- Below the mounting plane
\end{tabular} & & See ordering details IP 65 \\
\hline Cable length & 1 & 600 mm \\
\hline Permissible ambient temperature & \(\vartheta\) & -25 to \(+70^{\circ} \mathrm{C}\) \\
\hline Weight & \(m\) & Approx. 1.8 kg \\
\hline
\end{tabular}

\section*{Cable allocation}

Colour of the connecting cable (cable 1 - screened):
\begin{tabular}{lll}
Supply lines: & Red & +15 V \\
& Black & M0 (measured zero) \\
& Blue & -15 V \\
Signal lines: & White & M0 (measured zero) \\
& Pink & X axis \\
& Green & Y axis \\
Screen: & Yellow/Green & Housing transmitter \\
& Transparent & Screen
\end{tabular}

Notes: - The cable screen is not connected internally!
- If the transmitter is installed in a fully isolated manner, then the transmitter housing must be connected to earth!

Colour of the connecting cable (cable 2 - non-screened):
Feed cable: Blue
\begin{tabular}{lll}
Directional contacts: & Grey/Pink & \(\mathrm{X}_{\mathrm{A}}\) \\
& Red/Blue & \(\mathrm{X}_{\mathrm{B}}\) \\
& Yellow & \(\mathrm{Y}_{\mathrm{C}}\) \\
& Brown/Green & \(\mathrm{Y}_{\mathrm{D}}\) \\
Dead-man contact: & Grey & \\
Zero position contact: & Black & X-Achse \\
& Green & Y-Achse
\end{tabular}

\section*{Characteristic curves}

\section*{Zero position, directional and dead-man contacts}

\section*{Switch in the lever}

\section*{Pressure switch and push button:}

Rocker switch and rocker switch with detent:

Colour of the connection cables (cable 2 - non-screened):
\begin{tabular}{ll}
Feed cable: & Violet \\
Pressure operated switch and push button: & White
\end{tabular}

Rocker switch and rocker switch with detent: Brown

Unit dimensions (dimensions in mm)

3
\(7 \quad 2\)
6

Front (see notch)

1 Hand lever
2 Ball lever
3 Mounting face
4 Connecting cables (length 600 mm)
5 Switch in lever (see ordering details)
6 Dead-man contact
7 Pull detent

\section*{Notes}
(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\title{
Electronic signal transmitter
}

\section*{Type VT 10399}

Series 5X
Three axes version

\section*{Overview of contents}

\section*{Contents}

Page
Features
Ordering details
Function
Engineering guidelines
Technical data
Cable allocation
Characteristic curves
Zero position, directional and dead-man contact
Circuit example
Unit dimensions

Information on available spare parts:
www.boschrexroth.com/spc

\section*{Features}

Contained within the VT 10399-5X electronic signal transmitter are the electronic and mechanical components which are used to convert the lever movement and the operating elements contained within the ball grip into a proportional electrical voltage. Due to the design of the lever joint, safe operation of only one axis is also possible.

Features:
- Sensitive control due to low operating forces
- Integrated evaluation electronics
\(- \pm 15\) V DC supply voltage
- Replacable gaiter
- Switched off if there is a cable break in the supply cables
- Polarity protection

\section*{Options:}
- Dead-man switch in the hand lever
- The actuation pins of the \(Z\) axis are sealed (by means of a gaiter)
- The ball grip can be deflected by \(\pm 20^{\circ}\)
- Can be held in any position by means of a friction brake in the X and Y axes
- Directional contacts for electrical monitoring of the hand lever movement

\section*{Ordering details}

\section*{Function}

\section*{Mechanics}

The simple robust mechanism consists of a control lever that is mounted in a swivel bearing. Two plastic track potentiometers are adjusted, these are orientated in relation to the associated axis. The actuation elements in the ball grip also adjusts the plastic track potentiometers, thereby sensitive control is also possible in the \(Z\) axis. On request the ball grip can be steplessly deflected (max. \(\pm 20^{\circ}\)) in relation to the control lever. Spring centring returns the control lever and ball grip into the neutral position whn the lever is released. The mechanical components are protected by means of a gaiter.

\section*{Zero position, directional and dead-man contacts}

In order to be able to electrically monitor the direction of lever movement and the zero position, a contact can be fitted per half axis. This contact closes when the lever is moved out of its neutral position within the range of \(\pm 5 \%\) to \(\pm 10 \%\) (referred to the output signal \(\pm 10 \mathrm{~V}\)).
The transducer can also be fitted with a dead-man switch. This is operated by pressing the upper half of the hand lever (at right angles to the plane of installation).
When these functions are required, they are connected via a 2nd non-screened cable.

\section*{Electronics}

The plastic track potentiometer is connected in series with an impedance converter, which ensures that the control curve remains within the specified limits, even with varying loading on the control output. The electronics also carry out other protective functions. Should a cable break in the \(\pm 15 \mathrm{~V}\) supply lines occur, then the supply to the transducer is automatically switched off internally. The electrical connection is via multi-core screened cable.
The combination of plastic track potentiometer and impedance converter ensures that a long service life is achieved.

\section*{Engineering guidelines}

Attention: If the transmitter is installed in a fully isolated manner, then the transmitter housing must be earthed by a separate cable!

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Elektronics} & \\
\hline Supply voltage & \(U\) & \(\pm 15\) VDC (\(\pm 1 \%\)) stabilised \\
\hline Current consumption & 1 & Approx. 50 mA \\
\hline Control outputs & & \\
\hline - Output voltage & \(U\) & Max. \(\pm 10 \mathrm{~V}\) \\
\hline - Output current & 1 & Max. \(\pm 5 \mathrm{~mA}\) \\
\hline Switched contact & & 2 A , max. 30 VDC (ohmic load) \\
\hline Fuse & \(I_{s}\) & 2 A medium blowing characteristics \\
\hline Mechanics & & \\
\hline Lever displacement angle & \(\alpha\) & Approx. \(20^{\circ}\) from the spring centred position to the end position (when operated in the X or Y directions) \\
\hline Operating force & \(F\) & \begin{tabular}{l}
Start value approx. 7 N \\
Final value approx. 16 N
\end{tabular} \\
\hline \begin{tabular}{l}
Protection to EN 60529 \\
- Above the mounting plane: \\
- Below the mounting plane:
\end{tabular} & & See ordering details
\[
\text { IP } 65
\] \\
\hline Cable length & 1 & 600 mm \\
\hline Permissible ambient temperature & \(\vartheta\) & -25 to \(+70^{\circ} \mathrm{C}\) \\
\hline Weight & \(m\) & Approx. 2.0 kg \\
\hline
\end{tabular}

\section*{Cable allocation}
\begin{tabular}{lll}
Colour of the connecting cable (cable 1 - screened): \\
Supply lines: & Red & +15 V \\
& Black & M0 (measuring zero) \\
& Blue & -15 V \\
Signal lines: & White & M0 (measuring zero) \\
& Pink & X axis \\
& Green & Y axis \\
& Yellow & Z axis \\
Screen: & Yellow/Green & Housing transmitter \\
& Transparent & Screen
\end{tabular}

Notes: - The cable screen is not connected internally!
- If the transmitter is installed in a fully isolated manner, then the transmitter housing must be connected to earth!

Colour of the connecting cable (cable 2 - non-screened):
\begin{tabular}{lll}
Feed cable: & Blue & \\
Directional contacts: & Grey/Pink & \(\mathrm{X}_{\mathrm{A}}\) \\
& Red/Blue & \(\mathrm{X}_{\mathrm{B}}\) \\
& Yellow & \(\mathrm{Y}_{\mathrm{C}}\) \\
& Braun/Green & \(\mathrm{Y}_{\mathrm{D}}\) \\
& White/Yellow & \(\mathrm{Z}_{\mathrm{E}}\) \\
& Yellow/Brown & \(\mathrm{Z}_{\mathrm{F}}\) \\
Dead-man contact: & Grey & \\
Zero position contact: & Black & X axis \\
& Green & Y axis \\
& White/Green & Z axis
\end{tabular}

\section*{Characteristic curves}

\section*{Zero position, directional and dead-man contacts}

\section*{Circuit example}

Unit dimensions (dimensions in mm)

(c) This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. Without their consent it may not be reproduced or given to third parties.
The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgement and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Electronic accessories}
\begin{tabular}{|c|c|c|c|c|}
\hline Designation & Type & Component series & Data sheet & Page \\
\hline \multicolumn{5}{|l|}{Racks and card holders} \\
\hline Connection adapter & VT 10812 & 2X & 30105 & 787 \\
\hline Card holder & VT 3002 & 2X & 29928 & 791 \\
\hline 19' \({ }^{\text {racks }}\) & \begin{tabular}{l}
VT 19101, VT 19102, \\
VT 19103
\end{tabular} & 1X & 29768 & 795 \\
\hline \multicolumn{5}{|l|}{Power supply and stabilizing units} \\
\hline Power supply module & VT 11006, VT 11116 & 1X & 29729 & 803 \\
\hline Capacitor module & VT 11110 & 1X & 30750 & 807 \\
\hline \multicolumn{5}{|l|}{Test and service devices} \\
\hline Service case with test unit for servo-valves without integrated electronics & VT-SVTSY-1 & 1 X & 29681 & 811 \\
\hline Service case with test unit for servo and proportional valves with integral electronics (OBE) & VT-VETSY-1 & 1X & 29685 & 817 \\
\hline \multicolumn{5}{|l|}{Mating connectors} \\
\hline Mating connectors and cable sets for valves and sensors in hydraulics & & & 08006 & 829 \\
\hline
\end{tabular}

\section*{Rexroth}

Bosch Group

\section*{Connection adapter}

\section*{Type VT 10812}

Series 2X

Table of contents

\section*{Contents}

Features
Ordering code
Unit dimensions

\section*{Features}

Page
1
2
2 and 3

VT 10812 connection adapaters are used as connecting element between Euro-racks and electronic cards in Euro-format.

VT 10812-2X/32D connection adapters consist of:
- 32-pin female multi-point connector and
- 32-pin terminal strip (both a/c assigned; form D)

VT 10812-2X/48F connection adapters consist of:
- 48-pin female multi-point connector and
- 48-in terminal strip (\(\mathrm{b} / \mathrm{d} / \mathrm{z}\) assigned; form F)

VT 10812-2X/64G connection adapters consist of:
- 64-pin female multi-point connector and
- 64-pin terminal strip (\(\mathrm{f} / \mathrm{d} / \mathrm{b} / \mathrm{z}\) assigned; form G)

\section*{Ordering code}

Unit dimensions (dimensions in mm)

Adapter, 32-pin, form D

Unit dimensions (dimensions in mm)

Adapter, 48-pin, form F

Adapter, 64-pin, form G

\section*{Notes}

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) \(9352 / 18-0\)
Telefax +49 (0) 9352 / 18-23 58
documentation@boschrexroth.de www.boschrexroth.de

C This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.

The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Card holder}

\section*{Table of contents}

\section*{Content}

Ordering code
Features
Technical data
Notes on installation
Unit dimensions

\section*{Features}
- The card holder allows for simple installation and wiring of individual electronics cards in Euro-card format , e.g. in control cabinets
- Screwable or snappable to hat rail
- With additional adapter (included in scope of supply) which can be mounted vertically on a hat rail
3,4 - Rugged base
- Card locking and releasing by lever actuation
- Connection via screw terminals

Ordering code

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Terminal voltage according to VDE 0110 C} & \(U\) & max. \(48 \mathrm{VAC} / \mathrm{DC}\) \\
\hline \multirow[t]{5}{*}{Current carrying capacity} & VT 3002...15H & 1 & 15 A \\
\hline & VT 3002...32D & 1 & 4 A \\
\hline & VT 3002...32F & 1 & 4 A \\
\hline & VT 3002...48F & 1 & 4 A \\
\hline & VT 3002...64G & 1 & 3 A \\
\hline Connection cross-section & & A & Plug-in screw terminals max \(4 \mathrm{~mm}^{2}\), form \(\mathrm{H}=6 \mathrm{~mm}^{2}\) \\
\hline \multirow[t]{5}{*}{Type of connection (socket strip)} & VT 3002...15H & & 15-pin socket connector, form H, DIN 41612 \\
\hline & VT 3002...32D & & 32-pin socket connector, form D, DIN 41612 \\
\hline & VT 3002...32F & & 32-pin socket connector, form F, DIN 41612 \\
\hline & VT 3002...48F & & 48-pin socket connector, form F, DIN 41612 \\
\hline & VT 3002...64G & & 64-pin socket connector, form G, DIN 41612 \\
\hline \multirow[t]{5}{*}{Pinout} & VT 3002...15H & & Even-numbered, rows d/z \\
\hline & VT 3002...32D & & Even-numbered, rows a/c \\
\hline & VT 3002...32F & & Even-numbered, rows b/z \\
\hline & VT 3002...48F & & Even-numbered, rows d/b/z \\
\hline & VT 3002...64G & & Even-numbered, rows f/d/b/z \\
\hline \multicolumn{2}{|l|}{Permissible ambient temperature range} & \(\vartheta\) & -20 to \(+70^{\circ} \mathrm{C}\) \\
\hline \multicolumn{2}{|l|}{Weight single/double Euro-format} & m & \(0.5 \mathrm{~kg} / 0.8 \mathrm{~kg}\) \\
\hline
\end{tabular}

\section*{Notes on installation}

Push down the yellow operating levers and insert card completely. The card can only be unlocked and withdrawn after repeated actuation of the locking lever.

For the connection of cables, the connection web between the two card guide rails can be removed or snapped in on the other side.

Card holder for forms H 15-pin, D 32-pin, F 32-pin, and F 48-pin

Card holder for designs double Europe format 32 D as well as G 64-pole
Hat rail mounting only possible in vertical position

Unit dimensions (dimensions in mm)

VT 3002-1-2X/15H

VT 3002-1-2X/48F

VT 3002-1-2X/32D

VT 3002-1-2X/32F

Electronic card with front panel

VT 3002-1-2X/64G

Card locking mechanism

Unit dimensions (dimensions in mm)
VT 3002-2-2X/32D

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49(0) 9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Rexroth
Bosch Group

\section*{19"racks}

Type VT 19101, VT 19102, VT 19103

Component series 1X

\section*{Contents}

Page
Features
2
Ordering details 2
Unit dimensions
2 to 5

\section*{Features}
he 19" racks, VT 19101, VT 19102 and VT 19103 accept electronic assemblies in Euro-card format and they can be fitted into 19" electronic cabinets and housings.
They conform with DIN 41494 and IEC 297-3.
- Designed to VDE 0100/12.65-4
- Installation width; 84 pitch (TE) at 5.08 mm
- Designs of up to \(3 \times 3\) height units (HE)
at 44.45 mm for Euro-cards of \(100 \times 160 \mathrm{~mm}\) and \(100 \times 220 \mathrm{~mm}\)
- Electrical shock protection via a cover plate
- Sealed wiring space
- Vibration proof version (DB acceptance)

Optional outlets to cabinet wiring:
- Hinged rear panel with:
- 140 signal connection terminals on 10 plugs with 3 HE (max. connection cross-section \(2.5 \mathrm{~mm}^{2}\))
- Separate terminal block for the supply voltage with 10 terminals (max. connection cross section \(6 \mathrm{~mm}^{2}\))
- Standard connection plug coding
- Plug pre-assembly is possible

Or:
- VT 10812 connection adaptor (see RE 30105)
for magazines without rear wall

\section*{Further options are:}
- Rear panel with plugs instead of a blank rear wall for type VT 19102 and VT 19103
- Blank rear panel

\section*{Ordering details}
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|l|}{VT 191_- \({ }^{\text {- }} 1 \times 1 /\)} & * & \\
\hline \(1 \times 3 \mathrm{HE}\); card dimensions \(100 \times 160 \mathrm{~mm}\) & \(=01\) & \multicolumn{2}{|l|}{\multirow[b]{6}{*}{\[
\begin{aligned}
& 1= \\
& 2=
\end{aligned}
\]}} & Further details (options) in clear text \\
\hline \(2 \times 3 \mathrm{HE}\); card dimensions \(100 \times 160 \mathrm{~mm}\) & = 02 & & & Magazine nominal depth \\
\hline \(3 \times 3\) HE; card dimensions \(100 \times 160 \mathrm{~mm}\) & \(=03\) & & & For VT 19101 to VT 19103 \\
\hline Series 10 to 19 & & & & (card dimensions \(100 \times 160 \mathrm{~mm}\)): \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{(10 to 19: unchanged installation and connection dimensions)}} & & & 160 mm (without rear panel) \\
\hline & & & & 220 mm (with rear panel) \\
\hline
\end{tabular}

Unit dimensions: terminal plug (dimensions in mm)

Unit dimensions: VT 19101-1X (dimensions in mm)

Plug (only possible with a depth of 220)

The „u" numbers indicate the location of the cards within the magazine.
The first digit of the " \(u\) " number and the plug number gives the tier location.

Unit dimensions: VT 19102-1X (dimensions in mm)

The „, u" numbers indicate the location of the cards within the magazine.
The first digit of the " \(u\) " number and the plug number gives the tier location.

M4 internal earth bolts

The „u" numbers indicate the location of the cards within the magazine.
The first digit of the "u" number and the plug number gives the tier location.
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Notes
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
Fax \(\quad+49(0) 9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Rexroth}

Bosch Group

Power supply module

Type VT 11006, VT 11116

Series 1X

Table of contents

\section*{Contents}

Features
Ordering code
Technical data
Block circuit diagram
Terminal assignment
Notes
Unit dimensions

\section*{Features}

The power supply module supplies two stabilised voltages. It is used to supply external, electrical consumers.

\section*{Special features:}
- VT 11006-1X: \(24 \mathrm{~V} / \pm 15 \mathrm{~V}\)
- VT 11116-1X: \(24 \mathrm{~V} / \pm 10 \mathrm{~V}\)
- Switched-mode power supply unit
- Reverse voltage protection
- Function monitoring by means of LED lamps
- Output voltages electrically isolated from operating voltage

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|}
\hline & VT 11 & \(\frac{1}{1} \mathrm{X}\) & * & \\
\hline 24 V power supply module & & \multicolumn{2}{|r|}{\multirow{4}{*}{\(1 \mathrm{X}=\)}} & Further details in clear text \\
\hline Output voltage \(\pm 15 \mathrm{~V}\) & \(=006\) & & & Series 10 to 19 \\
\hline Output voltage \(\pm 10 \mathrm{~V}\) & \(=116\) & & & (10 to 19: unchanged installation \\
\hline & & & & and connection dimensions) \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|}
\hline & VT 11006-1X & VT 11116-1X \\
\hline \begin{tabular}{l}
Operating voltage \\
- Three-phase bridge (winding) \\
- Full bridge (winding) \\
(with external smoothing capacitor only, \(2200 \mu \mathrm{~F}\) per module)
\end{tabular} & \[
\begin{gathered}
21.5 \mathrm{~V}_{\text {eff }} \text { to } 35 \mathrm{~V}_{\text {eff }} \\
21.5 \mathrm{~V} \text { to } 35 \mathrm{~V} \\
20 \mathrm{~V} \text { to } 24 \mathrm{~V}
\end{gathered}
\] & \[
\begin{gathered}
21.5 V_{\text {eff }} \text { to } 35 V_{\text {eff }} \\
21.5 \mathrm{~V} \text { to } 35 \mathrm{~V} \\
20 \mathrm{~V} \text { to } 24 \mathrm{~V}
\end{gathered}
\] \\
\hline Power consumption P & \(\leq 10\) VA & \(\leq 10\) VA \\
\hline Output voltage \(U_{0}\) & \(\pm 15 \mathrm{~V}\) (\(\pm 1\) \%) & \(\pm 15 \mathrm{~V}\) (\(\pm 1\) \%) \\
\hline Residual ripple content (referred to the nominal output voltage value) & <1\% & <1\% \\
\hline Output current l & max. \(\pm 200 \mathrm{~mA}\) & max. \(\pm 150 \mathrm{~mA}\) \\
\hline Temperature range t & -25 to \(+70^{\circ} \mathrm{C}\) & -25 to \(+70^{\circ} \mathrm{C}\) \\
\hline Weight m & \(\sim 0.13 \mathrm{~kg}\) & \(\sim 0.13 \mathrm{~kg}\) \\
\hline
\end{tabular}

\section*{Block circuit diagram}

\section*{Terminal assignment}

\section*{Notes}
- The power supply module is not resistant to sustained short-circuit!
- In the case of overloading of one output voltage, the second output voltage is reduced as well!
- In the case of continuous operation of several adjacent modules and temperatures higher than \(40^{\circ} \mathrm{C}\), a minimum space of \(\geq 20 \mathrm{~mm}\) must be maintained between the modules!

Unit dimensions (dimensions in mm)

Top hat rail to
EN 60715

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) \(9352 / 18-2358\)
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Rexroth}

Bosch Group

\section*{Capacitor module}

\section*{Type VT 11110}

Series 1X

\section*{Table of contents}

\section*{Contents}

\section*{Features}

Supplementary information
Ordering code
Technical data
Pin assignment and block circuit diagram
Terminal assignment
Unit dimensions

\section*{Features}

This capacitor module is used for smoothing operating voltages for supplying various amplifier modules that control proportional and servo-valves.

\section*{Features:}
- Capacitors
- Polarity reversal diode
- Overvoltage protector
- LED indicator for output voltage

\section*{Supplementary information}
- The capacitor module may only be wired when disconnected from the power supply!
- In the case of polarity reversal of operating voltage
\(\rightarrow\) short-circuit!
- Do not install near power cables!

\section*{Ordering code}

\section*{Technical data}
\begin{tabular}{lr|l}
\hline Operating voltage & \(U_{0}\) & \(\leq 36 \mathrm{~V} \mathrm{DC}\) \\
\hline Capacitance & \(C_{1 / 2}\) & \(2 \times 3300 \mu \mathrm{~F}\) \\
\hline Reactance coil & \(L_{1 / 2}\) & \(18 \mu \mathrm{H}\) \\
\hline Overvoltage protector & & VDR \(35 \mathrm{~V} / 1 \mathrm{~mA}\) \\
\hline Permissible ambient temperature & \(t\) & \(-25^{\circ} \mathrm{C}\) bis \(+70^{\circ} \mathrm{C}\) \\
\hline Weight & \(m\) & \(\sim 0,13 \mathrm{~kg}\) \\
\hline
\end{tabular}

Pin assignment and block circuit diagram

\section*{Terminal assignment}
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multirow[t]{3}{*}{Operating voltage} & \(U_{0}\) & 1 & 4 & \(U_{0}\) & Output voltage \\
\hline & 0 V & 2 & 5 & 0 V & \\
\hline & 0 V & 3 & 6 & 0 V & \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) 9352 / 18-23 58
documentation@boschrexroth.de www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\title{
Service case with test unit for servo-valves without integrated electronics
}

\section*{Type VT-SVTSY-1}

Series 1 X

\section*{Table of contents}

\section*{Contents}

\section*{Features}

Ordering code
Test unit type VT-SVT-1-1X
\(\square\)

Functional description / operating instructions
Block circuit diagram / pin assignment
Test unit type VT-SVT-1-1X: Technical data
Unit drawing
Overview of servo-valves that are suitable for testing
Acccessories: Power supply unit type VT-SVTNT-2-1X/G12
Technical data
Accessories: Valve connecting cable

\section*{Features}
- Service case contains test device as well as power supply and connection cable as option (see ordering code)
- The test unit is suitable for commissioning and servicing work on hydraulic systems that are fitted with servo-valves without integral electronics
- Allows functional testing and localisation of faults in the case of machinery malfunction without removal of the servo-valve
- Voltage supply by means of 9 V block battery (not included in the delivery) or 12 V power supply
- Service case:
- Dimensions (W x H x D) \(450 \times 100 \times 350 \mathrm{~mm}\)
- Weight empty 2 kg complete \(\quad 3.2 \mathrm{~kg}\)

\section*{Note:}

The unit may only be used by personnel who are familiar with the test unit, the valve and the hydraulic system. We will not assume liability for damage caused by wrongful operation!

\section*{Ordering code}

\({ }^{1)}\) The mains connector of the power supply unit is suitable for power sockets in Germany and many European countries.
In some countries, a country-specific adapter must be used which is not included in the delivery.

\section*{Ordering code for individual components}
\begin{tabular}{l|l|l}
\hline Designation & Type / ordering code & Material no. \\
\hline Test unit for servo-valves without integral electronics & VT-SVT-1-1X & R900214710 \\
Connecting cable with cable socket Z31 & VT-SVTK-1-1X & R900939983 \\
Connecting cable with cable socket Z17 & VT-SVTK-2-1X & R900939984 \\
Connecting cable with cable socket Z8 & VT-SVTK-3-1X & R900939985 \\
Power supply unit 12 V; 1.25 A & VT-SVTNT-2-1X/G12 & R900946388 \\
\hline
\end{tabular}

\section*{Test unit type VT-SVT-1-1X}

The test unit is suitable for controlling and testing the function of servo-valves without integral electronics.
The voltage for the test device is provided by a 9 V block battery (not included in the delivery) or optionally by a 12 V power supply type VT-SVTNT-2-1X/G12.

\section*{Functional description / operating instructions}

\section*{Valve testing is carried out as follows:}
- Connect the connecting cable of the power supply unit to the socket [6] of the test unit or insert battery [11]
- Set function switch [1] to "ON" \(\rightarrow\) LED "power" [8] lights up
- For battery operation, carry out battery test:
- Set selector switch [3] to "50 mA"
- Set command value potentiometer [4] to "-100 \%"
- Actuate push-button [2] for battery test
- The test unit indicates the battery charge in \%
- Select coil type of the valve using selector switch [3] on the test unit
- Bring command value potentiometer [4] to the central position
- Use a suitable valve connecting cable (see ordering code) to connect the test unit (socket [7]) with the servo-valve (The valve connecting cables are to be wired so that the two coils of the servo-valve are connected in series.)
- Turn command value potentiometer [4] slowly anticlockwise or clockwise and observe the movement of the motor or cylinder
With a fully functional servo-valve, the motor or cylinder can be sensitively controlled and moved in the required direction or to the required position.

\section*{Block circuit diagram / pin assignment}

\section*{Test unit type VT-SVT-1-1X:}

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Operating voltages: & & \\
- Battery operation & \(U_{0}\) & 9 V (E-block, not included in the delivery) \\
- Operation with power supply unit & \(U_{0}\) & \(12 \mathrm{~V} \mathrm{DC} \pm 5 \%\) \\
\hline Current consumption of the test unit & \(I\) & 20 mA (plus valve current) \\
\hline Dimensions (W \(\times \mathrm{H} \times \mathrm{D})\) & & \(95 \times 158 \times 45 \mathrm{~mm}\) \\
\hline Weight & \(m\) & 0.34 kg \\
\hline
\end{tabular}

\section*{Unit drawing}

1 Function switch
2 Pushbutton for battery test
3 Selector switch for type of coil
4 Command value potentiometer
5 Coil current indicator (in \%)
6 Socket for power supply unit cable
7 Socket for valve connecting cable
8 "power" LED

Assignment of coil data to valve types:
\(5 \mathrm{~mA} / 500 \Omega\) per coil \(7.5 \mathrm{~mA} / 200 \Omega\) per coil \(20 \mathrm{~mA} / 80 \Omega\) per coil \(30 \mathrm{~mA} / 40 \Omega\) per coil \(50 \mathrm{~mA} / 28 \Omega\) per coil
\(30 \mathrm{~mA} / 85 \Omega\) per coil \(] \quad\)\begin{tabular}{l}
\(4 \mathrm{WS} 2 E M 6-2 \mathrm{X} / \ldots\) \\
\(4 \mathrm{WS} 2 E M 10-5 \mathrm{X} / \ldots\)
\end{tabular}
\(30 \mathrm{~mA} / 100 \Omega\) per coil \(50 \mathrm{~mA} / 80 \Omega\) per coil
\(50 \mathrm{~mA} / 85 \Omega\) per coil

4WS2E.10-4X \({ }^{\text {1) }}\)
4WS2E.10A-4X \({ }^{1)}\)
4DS1EO2-1X \({ }^{1)}\)
3DS2EH10-2X \({ }^{1)}\)
4WS2EM6-2X/... 4WS2EM10-5X/...

4WS2EM6-1X

4WS2EM6-2X

Overview of servo-valves that are suitable for testing
At the time of publishing this data sheet, the following Rexroth servo-vavles can be tested with the VT-SVT-1 test unit:
\begin{tabular}{|c|c|c|}
\hline Valve type & Electrical connection & Type of connecting cable \\
\hline 4WS2EM6-1X & K17 & VT-SVTK-2-1X \\
\hline 4WS2EM6-2X & K17 & VT-SVTK-2-1X \\
\hline 4WS2EM10-5X & K31 & VT-SVTK-1-1X \\
\hline 4WS2EM10-4X \({ }^{1)}\) & K8 & VT-SVTK-3-1X \\
\hline 4WS2EB10-4X \({ }^{\text {1) }}\) & K8 & VT-SVTK-3-1X \\
\hline 4WS2EM10A-4X \({ }^{1)}\) & K8 & VT-SVTK-3-1X \\
\hline 4WS2EB10A-4X \({ }^{1)}\) & K8 & VT-SVTK-3-1X \\
\hline 4WS2EM16-2X & K8 & VT-SVTK-3-1X \\
\hline 4DS1E02-1X \({ }^{\text {1) }}\) & K8 & VT-SVTK-3-1X \\
\hline 3DS2EH10-2X \({ }^{\text {1) }}\) & K8 & VT-SVTK-3-1X \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Valves not available for new applications
}

\section*{Acccessories: Power supply unit type VT-SVTNT-2-1X/G12}

Plug-in power supply unit 100 to 240 VAC \(\rightarrow 12\) VDC; 1.25 A
The mains connector of the power supply unit is suitable for power sockets in Germany and many European countries.
In some countries, a country-specific adapter must be used which is not included in the delivery.

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Operating voltage & \(U\) & 100 to \(240 \mathrm{VAC}, 50\) to 60 Hz \\
\hline Current consumption & \(I\) & 0.4 at 100 VAC \\
\hline Fuse, secondary side & \(I\) & 5 A \\
\hline Output voltage & \(U\) & \(12 \mathrm{VDC} ; 1.25 \mathrm{~A}\) \\
\hline Length of the connecting cable to the test unit & \(I\) & 2 m \\
\hline Dimensions \((\mathrm{W} \times \mathrm{H} \times \mathrm{D})\) & & \(77 \times 42.5 \times 26 \mathrm{~mm}\) \\
\hline Weight & \(m\) & 0.22 kg \\
\hline
\end{tabular}

\section*{Accessories: Valve connecting cable}

\section*{Connecting cable type VT-SVTK-1-1X}

Connecting cable between VT-SVT-1 test unit and servo-valves without integral electronics (valves with ordering code K31 for electrical connection)
The servo-valve coils are connected in series.

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Valve connection & Plug-in connecor to DIN 43563-BF6-3/Pg11 (series circuit) \\
\hline Test unit connection & Mono jack plug 2,5 mm \\
\hline Cable length & \(I\) \\
\hline Weight & 3 m \\
\hline
\end{tabular}

\section*{Connecting cable type VT-SVTK-2-1X}

Connecting cable between the VT-SVT-1 test unit and servo-
valves without integral electronics (valves with ordering code K17 for electrical connection)
The servo-valve coils are connected in series.
Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Valve connection & Plug in-connector VG 95328 (series circuit) \\
\hline Test unit connection & Mono jack plug \(2,5 \mathrm{~mm}\) \\
\hline Cable length & \\
\hline Weight & 3 m \\
\hline
\end{tabular}

\section*{Connecting cable type VT-SVTK-3-1X}

Connecting cable between the VT-SVT-1 test unit and servovalves without integral electronics (valves with ordering code K8 for electrical connection)
The servo-valve coils are connected in series.

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Valve connection & Plug in-connector \(14 \mathrm{~S}-2 \mathrm{P}\) (series circuit) \\
\hline Test unit connection & Mono jack plug \(2,5 \mathrm{~mm}\) \\
\hline Cable length & \(I\) \\
\hline Weight & 3 m \\
\hline
\end{tabular}

\section*{Bosch Rexroth AG}

Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Telefon +49 (0) 9352 / 18-0
Telefax +49 (0) \(9352 / 18-2358\)
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\title{
Service case with test unit for servo and proportional valves with integral electronics (OBE)
}

\section*{Type VT-VETSY-1}

\section*{Series 1X}

\section*{Table of contents}

\section*{Contents} Page

\section*{Features}

1
Ordering code
Test unit type VT-VET-1-1X:
- Functional description and operating instructions
- Block circuit diagram / pin assignment
- Technical data
- Unit drawing
-Connetions, indicator and adjustmen
- Connections, indicator and adjustment elements 8
- Overview of servo and proportional valves that can be tested 9

Power supply units

\footnotetext{
Connecting and adapter cables
}

\section*{Features}
- The service case comprises a test unit, power supply unit 24 V , connecting cables and adapter cables (see ordering code)
- The test unit can be used to control and carry out functional tests on servo and proportional valves with integral electronics and operating voltages of \(\pm 15 \mathrm{~V}\) or +24 V
- Simplifies commissioning and troubleshooting in hydraulic systems with servo and proportional valves
- Service case:
- Dimensions
- Weight
\begin{tabular}{ll}
(W \(\times \mathrm{H} \times \mathrm{D})\) & \(450 \times\) \\
empty & 2 kg \\
complete & 4.3 kg
\end{tabular} 2 kg 4.3 kg

\section*{Caution:}

The test unit may only be used by persons who are familiar with the unit, the valve and the hydraulic system. When set accordingly, the unit ignores control signals that come from the system. If safety features are provided on the control side, these are deactivated.
We assume no responsibility for damage caused by maloperation!

\section*{Ordering code}

\({ }^{1)}\) The mains connector of the power supply unit is suitable for power sockets in Germany and many European countries. In some countries, a country-specific adapter must be used which is not included in the delivery.

\section*{Test unit type VT-VET-1-1X}

This test unit can be used to control and carry out functional tests on servo and proportional valves with integral electronics and an operating voltage of \(\pm 15 \mathrm{~V}\) or +24 V .

\section*{Operating modes:}
- External operation \(\rightarrow\) looping in of the operating voltage and the command values from the control cabinet to the valve
- Internal/external operation \(\rightarrow\) command value feedforward via the test unit; operating voltage from the control cabinet
- Internal operation \(\rightarrow\) operating voltage provided by a separate power supply unit; command value feedforward via the test unit
- Command value provided via the BNC socket \(\rightarrow\) operating voltage optional

Typ VT-VET-1-1X

\section*{Functional description and operating instructions}

\section*{Voltage supply}

The test unit can be supplied with +24 V or \(\pm 15 \mathrm{~V}\), depending on the operating voltage required by the valve. To this end, the "power selector" switch must be set accordingly before commissioning.
An internal \(D C / D C\) converter generates the required auxiliary voltages of \(\pm 15 \mathrm{~V}\) for the internal command value signal.
The "power selector" switch connects, among other things, the internal reference potential LO to the mass potential applied externally.
Switch position " +24 V " \(\rightarrow\) input pin \(\mathrm{B}=\) reference potential
Switch position " \(\pm 15 \mathrm{~V}\) " \(\rightarrow\) input pin \(\mathrm{C}=\) reference potential

\section*{Connections}

\section*{Input plug ES (item 1) and 4 mm input sockets:}

Input plug ES on the left-hand side is used for connecting the cable coming from the control or the control cabinet. The 4 mm sockets on the left-hand side are connected directly with the pins of the ES input plug in accordance with the setting of the operating elements (see operating and indicator elements).
All signals coming from the control can therefore be measured at the sockets.

Potentiometers / trimming potentiometers
\begin{tabular}{|l|l|l|}
\hline Designation & Function & Preconditions \\
\hline Setpoint intern & \begin{tabular}{l}
Command value signal to valve \((A B-\) \\
pin D). The output switches automati- \\
cally between \\
\(U_{\text {comm }}= \pm 10 \vee\) or \(I_{\text {comm }}= \pm 20 \mathrm{~mA}\) \\
according to the load impedance of the \\
valve command value input.
\end{tabular} & \begin{tabular}{l}
- Operating voltage present at input switch ES \\
- power selector" switch position according to operating \\
voltage \\
- "setpoint selector" switch set to "intern \\
- "stepfunction key" pushbutton not pressed
\end{tabular} \\
\hline Stepfunction level & \begin{tabular}{l}
Adjustment of the step-input amplitude. \\
The step function can be activated us- \\
ing the "stepfunction key" pushbutton.
\end{tabular} & \begin{tabular}{l}
- Operating voltage present at input switch ES \\
- - "power selector" switch position according to operating \\
voltage \\
- - "setpoint selector" switch set to "intern" \\
The step function is generated by pressing the "stepfunction \\
key" pushbutton.
\end{tabular} \\
\hline
\end{tabular}

\section*{Functional description and operating instructions (continued)}

\section*{LED-lamps}
\begin{tabular}{|l|l|l|}
\hline Designation & Function & Preconditions \\
\hline power & Indication of internal voltage supply & - Operating voltage at input switch ES \\
\hline \begin{tabular}{l}
enable \\
indication \\
control
\end{tabular} & \begin{tabular}{l}
Indication of enable signal coming from the control// \\
control cabinet \\
(input socket ES - pin C)
\end{tabular} & \begin{tabular}{l}
- Operating voltage is +24 V \\
- "power selector" switch to position "24 V" \\
- "power" LED lights up
\end{tabular} \\
\hline \begin{tabular}{l}
enable \\
indication \\
valve
\end{tabular} & \begin{tabular}{l}
Indication of the enable signal going to the valve \\
(output socket AB - pin C and measuring socket C). \\
The LED also lights up, as soon as an enable signal \\
is applied to the 4 mm measuring socket C. Without \\
a short-circuit plug, this signal is not applied to output \\
socket AB, but to the valve.
\end{tabular} & \begin{tabular}{l}
- Operating voltage is +24 V \\
- "power selector" switch to position "24 V" \\
- "power" LED lights up \\
- Enable signal is activated
\end{tabular} \\
\hline
\end{tabular}

\section*{Switches}

All the functions described are only valid as long as all short-circuit links are plugged!
\begin{tabular}{|c|c|c|}
\hline Designation & Switch position & Function \\
\hline \multirow[t]{5}{*}{power selector} & \multirow[t]{2}{*}{+24 V} & Internal reference potential is connected to ES - pin B (0 V to \(U_{B}=24 \mathrm{~V}\)). \\
\hline & & The enable signal can be generated using switch "enable" ("on") or be switched off ("off"). \\
\hline & \multirow[t]{3}{*}{\(\pm 15 \mathrm{~V}\)} & Internal reference potential is connected to ES - pin C (0 V to \(\left.U_{\mathrm{B}}= \pm 15 \mathrm{~V}\right)\). \\
\hline & & Enable signal generation deactivated. \\
\hline & & ES - pin C is directly connected to AB - pin C (short-circuit link). \\
\hline \multirow[t]{3}{*}{\begin{tabular}{l}
enable \\
(only with \\
24 V opera- \\
tion)
\end{tabular}} & \multirow[t]{2}{*}{on} & "setpoint selector" switch to position "control" \(\rightarrow\) an external enable signal applied by the control (ES - pin C) is switched through. \\
\hline & & "setpoint selector" switch to position "intern" or „BNC" \(\rightarrow\) The enable signal for the valve is set. \\
\hline & off & The enable signal output (AB - Pin C) is connected to the reference potential (0 V) at low resistance. \\
\hline \multirow[t]{7}{*}{setpoint selector} & \multirow[t]{2}{*}{control} & The command value lines are connected directly from the control to the valve via pin \(D\) and pin E. \\
\hline & & If the "power selector" is at position " 24 V " and the "enable" switch is set to "on" \(\rightarrow\) then the enable signal is switched through from the control to the valve (pin C). \\
\hline & \multirow[t]{2}{*}{intern oder BNC} & \begin{tabular}{l}
"power selector" switch to position " 24 V" \(\rightarrow\) \\
The enable signal is fed to the valve as with the "enable" switch position.
\end{tabular} \\
\hline & & The reference potential for the command value (AB - pin E) corresponds to the internal reference potential (0 V). \\
\hline & \multirow[t]{2}{*}{intern} & If the "stepfunction key" pushbutton is not actuated \(\rightarrow\) then the command value signal to the valve (\(A B-\) pin \(D\)) is as preselected by means of command value potentiometer "setpoint intern". \\
\hline & & If the "stepfunction key" pushbutton is actuated \(\rightarrow\) then the command value signal to the valve (\(A B-\) pin \(D\)) is as preselected by means of trimming potentiometer "stepfunction level". \\
\hline & BNC & The signal applied to the BNC socket is used as command value signal and fed to the valve (AB - pin D). \\
\hline
\end{tabular}

\section*{Pushbutton}
\begin{tabular}{|l|l|l|}
\hline Designation & Function & Preconditions \\
\hline \begin{tabular}{l}
stepfunction \\
key
\end{tabular} & \begin{tabular}{l}
Changeover between command value signals "set- \\
point intern" and "stepfunction level" (pushbutton \\
actuated)
\end{tabular} & \begin{tabular}{l}
Operating voltage applied to input switch ES. "power \\
selector" switch position according to the operating \\
voltage type. \\
"setpoint selector" switch to "intern"
\end{tabular} \\
\hline
\end{tabular}

\section*{Technical data (for applications outside these parameters, please consult us!)}
\begin{tabular}{|c|c|}
\hline Operating voltages & \\
\hline "power selector" switch: & \\
\hline - Switch position "24 V" \(\mathrm{U}^{\text {B }}\) & \(24 \mathrm{~V} ;-20 \%+40 \%\) \\
\hline - Switch position " \(\pm 15 \mathrm{~V}\) " \(U^{\text {B }}\) & \(\pm 15 \mathrm{~V} ; \pm 10 \%\) \\
\hline Current consumption of the test unit I & 0.1 A \\
\hline Max. current carrying capacity of pins \(A\) and \(B\) of input plug ES and output socket AB when testing 24 V proportional or high-response control valves & 6 A \\
\hline Inputs: & \\
\hline - Input plug ES & \\
\hline Command values to pins E and D \(U_{i} ; I_{i}\) & according to valve details \\
\hline Enable signal to pin C (24 V operation) not active \(U_{\text {E }}\) & 0 to 10 V \\
\hline active \(\quad U_{E}\) & 16 V to \(U_{B}\) \\
\hline - Output socket AB & \\
\hline Actual value to pin F \(\quad U_{i} ; I_{i}\) & according to the actual value output of the valve \\
\hline - BNC socket \(\quad U_{i}\) & 0 bis \(\pm 10 \mathrm{~V}\) \\
\hline \begin{tabular}{l}
Outputs (all short-circuiting links plugged): \\
- Input plugES
\end{tabular} & \\
\hline Actual value to pin in F \(U_{0} ; I_{0}\) & according to the actual value output of the valve \\
\hline - Output socket AB & \\
\hline Enable signal to pin C (24 V operation) & \\
\hline - "setpoint selector" switch & \\
\hline -Switch position "intern" or "BNC" & \\
\hline "enable" switch to position "off" \(U_{\text {E }}\) & 0 V \\
\hline "enable" switch to position "on" \(U_{\text {E }}\) & \(U_{B}\) \\
\hline -Switch position "control" & \\
\hline "enable" switch to position "off" \(U_{\text {E }}\) & 0 V \\
\hline "enable" switch to position "on" \(U_{\text {E }}\) & according to pin C of input plug ES \\
\hline Command values to pins D and E & \\
\hline - "setpoint selector" switch & \\
\hline -Switch position "intern" or "BNC" pin E & Reference potential \\
\hline pin D \(\quad U_{\text {comm }}\) & 0 to \(\pm 10 \mathrm{~V}\), falls \(R_{\text {ivalve }}>500 \Omega\) \\
\hline \(I_{\text {comm }}\) & 0 to \(\pm 20 \mathrm{~mA}\), falls \(R_{\text {ivalve }}<500 \Omega\) \\
\hline -Switch position "control" pins E and D U comm \(^{\text {c }}\) & according to input plug ES (pins E and D) \\
\hline Dimensions (\(\mathrm{W} \times \mathrm{H} \times \mathrm{D}\)) & \(94 \times 54 \times 160 \mathrm{~mm}\) \\
\hline Weight m & 0.36 kg \\
\hline
\end{tabular}

For the item numbers, see page 8

\section*{Description of connections and indicator and adjustment elements}
\begin{tabular}{|c|c|c|}
\hline Functional element & Labelling & Position \({ }^{1)}\) \\
\hline \begin{tabular}{l}
Input plug ES: \\
Connection on the control side using component plug K31, \\
CM02E14S-61P
\end{tabular} & & 1 \\
\hline Switch for selecting the operating voltage required by the valve & power selector & 2 \\
\hline \begin{tabular}{l}
LED lamps: \\
- Readiness for operation \\
- Enable signal of input plug ES and from the external control to pin C \\
- Enable signal to measuring sockets, output socket AB and pin C
\end{tabular} & \begin{tabular}{l}
power \\
enable indication control \\
enable indication valve
\end{tabular} & \[
\begin{array}{r}
3 \\
4 \\
13
\end{array}
\] \\
\hline Input measuring sockets & \(A\) to \(F\) and PE & 5 \\
\hline Marking of measuring sockets & A to F & 15 \\
\hline Switch for selecting the command value signal source & setpoint selector & 6 \\
\hline BNC socket for the connection of an external, independent command value encoder & & 7 \\
\hline Potentiometer for adjusting the internal command value signal & setpoint intern & 8 \\
\hline Pushbutton for selecting between internal command value signals for the generation of a step-change signal & stepfunction key & 9 \\
\hline Enable switch for the generation of an enable signal that is independent of an external control & enable & 10 \\
\hline Trimming potentiometer for adjusting the amplitude of the internal step function generator & stepfunction level & 11 \\
\hline Current / voltage output for the valve command value with automatic changeover between \(U_{0}=0 \mathrm{~V}\) to \(\pm 10 \mathrm{~V}\) or \(I_{0}=0\) to \(\pm 20 \mathrm{~mA}\) & & 17 \\
\hline Short-circuiting links for the separation of individual cable strands in the connection from the control to the valve & & 14 \\
\hline Output measuring sockets for checking the signals in the valve connecting cable & A to F & 12 \\
\hline \begin{tabular}{l}
Output socket AB: \\
Connection on the valve side using an MS3108A-14S-6S flanged socket
\end{tabular} & & 16 \\
\hline Voltage converter DC/DC for the internal voltage supply & & 18 \\
\hline
\end{tabular}
\({ }^{1)}\) The item numbers refer to the unit drawing and block circuit diagram

\section*{Notes:}

\section*{Operating mode without enable input}

Valves with integral electronics and an operating voltage of +24 V without enable input use connection C as reference potential for the actual valve value. In this case, the "enable" switch must be set to "off".

\section*{Operating mode with enable input}

Valves with integral electronics and an operating voltage of +24 V with enable input use connection B as reference potential for the actual valve value. In this case, the "enable" switch must be set to "on".

\section*{Overview of servo and proportional valves that can be tested}

At the time of publicizing this data sheet, the following servo and proportional valves of Bosch Rexroth can be tested with the VT-VET-1-1X test unit:
\begin{tabular}{|c|c|}
\hline Valve type & Operating voltage \(U_{B}\) \\
\hline \begin{tabular}{l}
Servo-valve with integral electronics (OBE) \\
4WSE2EM6 (without electrical position feedback) \\
4WSE2EM10(A)-4X (without electrical position feedback) \\
4WSE2EE10(A)-4X \\
4WSE2EM10-5X (without electrical position feedback) \\
4WSE2ED10-5X \\
4WSE2EM16(A) (without electrical position feedback) \\
4WSE2ED16(A) \\
4WSE3EE16 \\
4WSE3EE25 \\
4WSE3EE32 \\
4DSE1EO2 (without electrical position feedback) \\
3DSE2EH10 (without electrical position feedback)
\end{tabular} & \[
\begin{aligned}
& \pm 15 \mathrm{~V} \\
& \pm 15 \mathrm{~V}
\end{aligned}
\] \\
\hline \begin{tabular}{l}
Proportional and high-response valves with integral electronics (OBE) \\
4WRAE (without electrical position feedback) \\
4WRBAE (without electrical position feedback) \\
4WREE \\
4WRPE \\
4WRPEH \\
4WRSE(H) \\
4WRKE \\
4WRBKE \\
4WRLE \\
4WRTE \\
4WRGE \\
4WRDE \\
.WRCE \\
FESE (ab Serie 2X) \\
3FERE \\
.WRZE (without electrical position feedback) \\
DBEE (without electrical position feedback) \\
DBEME (without electrical position feedback) \\
DBEMTE (without electrical position feedback) \\
DBETE (without electrical position feedback) \\
DBETRE (without electrical position feedback) \\
ZDBEE (without electrical position feedback) \\
STW on enquiry \\
DREE (without electrical position feedback)
\end{tabular} & \[
\begin{aligned}
& +24 \mathrm{~V} \\
& \pm 15 \mathrm{~V} \text { or }+24 \mathrm{~V} \\
& \pm 15 \mathrm{~V} \text { or }+24 \mathrm{~V} \\
& \pm 15 \mathrm{~V} \text { or }+24 \mathrm{~V} \\
& +24 \mathrm{~V} \\
& \pm 15 \mathrm{~V} \text { or }+24 \mathrm{~V} \\
& \\
& +24 \mathrm{~V}
\end{aligned}
\] \\
\hline
\end{tabular}

\section*{Power supply units}

\section*{Included in delivery}

Power supply unit type VT-VETNT-3-1X/G24
Desktop version 90-265 VAC \(\rightarrow 24\) VDC; 3.75 A
The mains connector of the power supply unit is suitable for power sockets in Germany and many European countries. In some countries, a country-specific adapter must be used which is not included in the delivery.

Technical Data (for applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Operating voltage & \(U\) & \(90-265 \mathrm{VAC} ; 47-63 \mathrm{~Hz}\) \\
\hline Current consumption & \(I\) & max. 1.5 A \\
\hline Fuse & & Electronic overload protection \\
\hline Output voltage & \(U\) & \(24 \mathrm{VDC} \pm 1 \mathrm{~V} ; 3.75 \mathrm{~A}\) \\
\hline Supply cable length & \(I\) & approx. 1.5 m \\
\hline Cable length to test unit & \(I\) & approx. 1.5 m \\
\hline Dimensions \((\mathrm{W} \times \mathrm{H} \times \mathrm{D})\) & & \(135 \times 65 \times 41 \mathrm{~mm}\) \\
\hline Weight & \(m\) & 0.4 kg \\
\hline
\end{tabular}

Not included in delivery
Power supply unit type VT-VETNT-2-1X/G15
Plug version 115 VAC / 230 VAC \(\rightarrow \pm 15\) VDC; 0.25 A (separate order, mat-no. R900576199)
The power supply unit is suitable for power sockets in Germany and many European countries.
In some countries, a country-specific adapter must be used which is not included in the delivery.

Technical Data (for applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Operating voltage & \(U\) & \(115 \mathrm{~V} / 230 \mathrm{~V} \pm 5 \% 50 / 60 \mathrm{~Hz}\) can be changed over \\
\hline Current consumption & \(I\) & \(<29 \mathrm{~mA}\) \\
\hline Fuse & & Thermal link \(130^{\circ} \mathrm{C}\) \\
\hline Output voltages & \(U\) & \(+15 \mathrm{VDC} \pm 0.2 \mathrm{~V} ; 0.25 \mathrm{~A}\) \\
& & \(-15 \mathrm{VDC} \pm 0.2 \mathrm{~V} ; 0.25 \mathrm{~A}\)
\end{tabular}, \begin{tabular}{lll}
\hline Cable length to the test unit & \(I\) & 2 m \\
\hline Dimensions \((\mathrm{W} \times \mathrm{H} \times \mathrm{D})\) & & \(86 \times 56 \times 86 \mathrm{~mm}\) \\
\hline weight & \(m\) & 0.63 kg \\
\hline
\end{tabular}

\section*{Connecting and adapter cables}

Included in delivery (2 parts)

\section*{Connecting cable type VT-VETK-1-1X}

Connecting cable between the VT-VET-1-1X test unit and servo and proportional valves with integral electronics (valves with the electrical connection ordering codes K9 and K31)

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Valve connection & Plug-in connector to DIN EN 175201-804 \\
\hline Test unit connection & Plug MS3101A 14S 6P \\
\hline Connecting cable length & \(I\) \\
\hline Weight & \(m\) \\
\hline
\end{tabular}

\section*{Notes:}

To achieve greater lengths, several cables can be joined together.
When operating valves with an electrical connection K31, the earth is interrupted.

\section*{Included in delivery}

\section*{Adapter cable type VT-VETAK-1-1X}

Adapter cable between the VT-VET-1-1X test unit and servo and proportional valves with integral electronics (valves with electrical connection ordering code K17).

Technical data (for applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Valve connection & Plug-in connector VG 95328 \\
\hline Test unit connection & Plug MS3101A 14S 6P \\
\hline Connecting cable length & \(I\) \\
\hline Weight & \(m\) \\
\hline
\end{tabular}

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengiesser 1
97816 Lohr am Main, Germany
Telephone +49 (0) 9352 / 18-0
Fax +49 (0) 9352 / 18-23 58
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

Mating connectors and cable sets for valves and sensors in hydraulics

Table of contents
See page

\section*{Features}
- Mating connectors and cable sets for the electrical connection to
- Valve solenoids
- Valves with installed electronics
- Position and pressure sensors
- Different designs and standards
- Plastic and metal versions

\section*{Table of contents}
\begin{tabular}{l}
\begin{tabular}{l}
For valves with connector "K4", according to EN \(175301-803\) and ISO 4400, 2-pole + PE, \\
"large cubic connector" \\
\begin{tabular}{l}
Mating connectors for valves with one or two \\
solenoids (individual connection)
\end{tabular} \\
\hline
\end{tabular}\(|\)\begin{tabular}{l|l|l|}
\hline Without circuitry: \\
Z4, Z45
\end{tabular} \\
\hline
\end{tabular}

Table of contents

Table of contents
\begin{tabular}{|c|c|c|c|}
\hline & & & Page \\
\hline Cable sets, 3-pole + PE & Without circuitry: Z14 & & \\
\hline Cable sets, 3-pole + PE & With indicator light: Z14L & & 3 \\
\hline \multicolumn{3}{|l|}{For sensors and valves with connector "K24", "K35" and "K72"} & 24 to 29 \\
\hline \multirow[t]{4}{*}{Mating connectors, M12 x 1, 4-pole, line cross-section \(0.75 \mathrm{~mm}^{2}\)} & \begin{tabular}{l}
straight: \\
4PE11508
\end{tabular} & & \multirow{4}{*}{24 and 25} \\
\hline & \begin{tabular}{l}
straight: \\
4PZ24
\end{tabular} & & \\
\hline & angled: 4PE11509 & & \\
\hline & \begin{tabular}{l}
angled: \\
4PZ24
\end{tabular} & & \\
\hline \multirow[t]{3}{*}{Cable sets, M12 x 1, 4-pole, line cross-section \(0.34 \mathrm{~mm}^{2}\)} & straight: 4PM12 & & \\
\hline & \begin{tabular}{l}
straight: \\
4PZ24
\end{tabular} & & 26 and 27 \\
\hline & \begin{tabular}{l}
angled: \\
4PM12
\end{tabular} & & \\
\hline
\end{tabular}

\section*{Table of contents}
\begin{tabular}{|c|c|c|c|}
\hline & & & Page \\
\hline \multirow[t]{2}{*}{Cable sets, M12 x 1, 4-pole, line cross-section \(0.75 \mathrm{~mm}^{2}\)} & \begin{tabular}{l}
Straight: \\
KABELSATZ \\
VT-SSPA1-1X/M12/1/V00
\end{tabular} & & \multirow[b]{2}{*}{28 and 29} \\
\hline & \begin{tabular}{l}
Angled: \\
KABELSATZ \\
VT-SSPA1-1X/M12/2/V00
\end{tabular} & & \\
\hline \multicolumn{3}{|l|}{For mechanical position switches, mechanical pressure switches and valves with central connection with connector "K6"} & 30 and 31 \\
\hline Mating connector, 6-pole + PE & 7PZ6, according to EN 175801-804 for connector K6 & & 30 and 31 \\
\hline \multicolumn{3}{|l|}{For directional valve with connector "C4" and "C4Z" (AMP Junior-Timer)} & 32 \\
\hline Mating connectors & 2P JUNIOR D2 2 2P D1.2 JUNIOR & & \\
\hline \multicolumn{3}{|l|}{For directional valves with connector "K40" (Deutsch plug)} & 33 \\
\hline Mating connectors & 2P DT06 K40 & & \\
\hline & & & 33 \\
\hline
\end{tabular}

For valves with connector "K4" according to EN 175301-803 and ISO 4400, 2-pole + PE, "large cubic connector"
- Mating connectors for valves with one or two solenoids (individual connection)

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC U & Current
\[
I_{\max }
\] & Color & Valve side & Fitting & Material number & Circuit diagram \\
\hline \multicolumn{7}{|l|}{Without circuitry, standard} & \multirow[t]{5}{*}{} \\
\hline \multirow[b]{2}{*}{Z4} & \(12 . .240 \mathrm{~V}\) & 16 A & Gray & A & M16 x 1.5 & R901017010 & \\
\hline & 12... 240 V & 16 A & Black & B & M16 \(\times 1.5\) & R901017011 & \\
\hline \multirow[b]{2}{*}{Z45} & \(12 . .240 \mathrm{~V}\) & 16 A & Brown & A & NPT 1/2" & R900004823 & \\
\hline & 12... 240 V & 16 A & Black & B & NPT 1/2" & R900011039 & \\
\hline \multicolumn{7}{|l|}{With indicator light} & \multirow[t]{3}{*}{} \\
\hline Z5L & 12... 240 V & 3 A & Black & A/B & M16 x 1.5 & R901017022 & \\
\hline Z55L & 12... 240 V & 3 A & Black & A/B & NPT 1/2" & R900057453 & \\
\hline \multicolumn{7}{|l|}{With indicator light and Zener diode suppression circuit} & \(1 \times \cdots\) \\
\hline Z5L1 & \(24 \mathrm{~V} \pm 10 \%^{1)}\) & 3 A & Black & A/B & M16 x 1.5 & R901017026 & \\
\hline \multicolumn{7}{|l|}{With indicator light and protective diode} & \multirow[t]{2}{*}{} \\
\hline Z5L2 & \[
\begin{gathered}
24 \mathrm{~V} \pm 10 \%^{2)} \\
\text { only DC }
\end{gathered}
\] & 3 A & Black & A/B & M16 x 1.5 & R901017027 & \\
\hline \multicolumn{7}{|l|}{With rectifier} & \multirow[t]{3}{*}{} \\
\hline RZ5 & \(80 \ldots 240 \mathrm{~V}^{3}\) & 0.75 A & Black & A/B & M16 \(\times 1.5\) & R901017025 & \\
\hline RZ55 & 80... \(240 \mathrm{~V}^{3}\) & 0.75 A & Black & A/B & NPT 1/2" & R900842566 & \\
\hline \multicolumn{7}{|l|}{With indicator light and rectifier} & \multirow[t]{3}{*}{} \\
\hline RZ5L & 80... \(240 \mathrm{~V}^{3}\) & 0.75 A & Black & A/B & M16 x 1.5 & R901017029 & \\
\hline RZ55L & 80... \(240 \mathrm{~V}^{3}\) & 0.75 A & Black & A/B & NPT 1/2" & R900057455 & \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Limitation of the switch-off voltage peak to 55 V
2) Limitation of the switch-off voltage peak to 1 V
\({ }^{3}\)) Limitation of the switch-off voltage peak to 2 V
}

Technical Data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ambient temperature} & Standard & \({ }^{\circ} \mathrm{C}\) & -40 to +125 \\
\hline & with indicator light/r & \({ }^{\circ} \mathrm{C}\) & -20 to +60 \\
\hline \multicolumn{3}{|l|}{Protection class according to EN 60529} & IP 65 with mating connector mounted and locked \\
\hline \multicolumn{3}{|l|}{Indicator light} & LED yellow \\
\hline \multicolumn{3}{|l|}{Number of poles} & \(2+\mathrm{PE}\) \\
\hline \multicolumn{3}{|l|}{Terminal area for lines with external diameter mm} & 5 to 10 \\
\hline \multicolumn{3}{|l|}{Maximum line cross-section \(\mathrm{mm}^{2}\)} & \(1.5{ }^{1)}\) \\
\hline \multicolumn{3}{|l|}{Type of connection} & Screw connection \\
\hline
\end{tabular}
\({ }^{1)} 2.5 \mathrm{~mm}^{2}\) with special ferrule crimping pliers (e.g. Knipex 975314 or Weidmüller PZ 6/5)

Unit dimensions: Z4, Z45 (dimensions in mm)

1 Mounting screw M3, tightening torque \(M_{A}=0.5 \mathrm{Nm}\)
2 Fitting M16 \(\times 1.5\)
3 Fitting NPT 1/2"

Unit dimensions: Z5..., RZ5... (dimensions in mm)

Z5L, Z5L1, Z5L2, RZ5, RZ5L, RZ55

1 Mounting screw M3, tightening torque \(M_{\mathrm{A}}=0.5 \mathrm{Nm}\)
2 Fitting M16 \(\times 1.5 /\) NPT 1/2" (see table on page 6)

\section*{Z55L, RZ55L}

For valves with connector "K4" according to EN 175301-803 and ISO 4400, 2-pole + PE, "large cubic connector"
- Cable sets for valves with one or two solenoids (individual connection)

\section*{Ordering code}

Fast switching / Power reduction
\begin{tabular}{l|l|l|l|l}
VT-SSBA1 & 24 V & 4 A & Black & Types and technical data see data sheet 30362
\end{tabular}
1) Limitation of the switch-off voltage peak to 55 V

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ambient temperature} & Cable fixedly laid & \({ }^{\circ} \mathrm{C}\) & -20 to +80 \\
\hline & Cable moveable & \({ }^{\circ} \mathrm{C}\) & -5 to +70 \\
\hline \multicolumn{3}{|l|}{Protection class according to EN 60529} & IP 67 with mating connector mounted and locked \\
\hline Indicator light & & Z4L... & LED yellow \\
\hline \multicolumn{3}{|l|}{Connection line} & Öflex 150 PVC, gray \\
\hline \multicolumn{2}{|l|}{Line cross-section} & \(\mathrm{mm}^{2}\) & \(3 \times 1.0\) \\
\hline \multirow[t]{2}{*}{Core marking} & PE & & Green/yellow \\
\hline & Other wires & & Black with numbers \\
\hline \multicolumn{3}{|l|}{Number of poles} & 2 + PE \\
\hline Cable diameter & & mm & Approx. 7 \\
\hline
\end{tabular}

1 LED
2 Contacting \(0+180^{\circ}\) rotatable
3 Flat seal (captive)
4 Name plate
5 Mounting screw M3 (captive), tightening torque \(M_{\mathrm{A}}=0.5 \mathrm{Nm}\)

L Cable length 3, 5 or 10 m (see "Ordering code")

For valves with connector "K4" according to EN 175301-803 and ISO 4400, 2-pole + PE, "large cubic connector"
- Cable sets for valves with two solenoids (Double mating connectors)

Ordering code: For directional valves type WE size 6, SEC and pilot operated schwitching valves
\begin{tabular}{|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC U & \begin{tabular}{l}
Current \\
\(I_{\text {max }}\)
\end{tabular} & Cable length & Material number & Circuit diagram \\
\hline With connec
Z60 & \[
\text { r M12 x } 1
\]
\[
24 \mathrm{~V}
\] & 4 A & - & R901207820 & \\
\hline With connec
Z60L & \[
\text { r M12 } \times 1 \mathrm{a}
\]
\[
24 \mathrm{~V}
\] & indicator
\[
4 \mathrm{~A}
\] & ght & R901207819 & \\
\hline With connec Zener diode
Z60L8 & M12 x 1 , in uppression
\[
24 \text { V 1) }
\] & icator light cuit
\[
4 \mathrm{~A}
\] & d

-
- & R901205511 & \\
\hline With breako
Z61 & cable
\[
\text { 12... } 230 \mathrm{~V}
\]
\[
\text { 12... } 230 \mathrm{~V}
\] & 4 A
4 A & 3 m
5 m & \begin{tabular}{|r|}
R901207821 \\
\hline R901207822
\end{tabular} & \\
\hline With breako
Z61L & \begin{tabular}{l}
able, shiel \\
24 V
\end{tabular} & , with in & \begin{tabular}{l}
ator ligh \\
3 m
\end{tabular} & R901286065 & S = Shield \\
\hline
\end{tabular}

\footnotetext{
\({ }^{1)}\) Limitation of the switch-off voltage peak to \(\leq 50 \mathrm{~V}\)
}

Ordering code: For directional valves type WE size 10

\({ }^{\text {1) }}\) Limitation of the switch-off voltage peak to \(\leq 50 \mathrm{~V}\)

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|}
\hline Ambient temperature \({ }^{\circ} \mathrm{C}\) & -20 to +60 \\
\hline Protection class according to EN 60529 & IP 67 with mating connector mounted and locked \\
\hline Indicator light Z60L..., Z61L... & LED yellow \\
\hline Maximum operating current per contact A & 4 (at \(40{ }^{\circ} \mathrm{C}\)), 3 (at \(60^{\circ} \mathrm{C}\)) \\
\hline Connection line & PUR-JZ black, with UL / CSA approval \\
\hline Line cross-section of the connection line \(\mathrm{mm}^{2}\) & \(3 \times 0.75\) \\
\hline Cable diameter of the breakout cable with "Z61" mm & \(5.9 \pm 0.2\) \\
\hline Cable diameter of the breakout cable with "Z61L" mm & \(6.5 \pm 0.2\) \\
\hline Overlap of shielding braid with "Z61L" & at least \(85 \%\) \\
\hline Line cross-section of the breakout cable with "Z61" \(\mathrm{mm}^{2}\) & \(4 \times 0.75\) \\
\hline Line cross-section of the breakout cable with "Z61L" \(\mathrm{mm}^{2}\) & \(3 \times 0.75\) \\
\hline Core marking with "Z61" PE & Green/yellow \\
\hline Other wires & Black with numbers \\
\hline Connector M12 & Thread in metal design, coding/pinout, design according to EN 61076-2-101:2003 + A1:2006 \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

For valves with "small cubic connector"
- Mating connector

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC \(U_{\text {max }}\) & Current
\[
I_{\text {max }}
\] & Color & Fitting & Material number & Circuit diagram \\
\hline G4W1F & 50 & 6 & Black & PG 7 & R900023126 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Ambient temperature & \({ }^{\circ} \mathrm{C}\) & -40 to +90 \\
\hline Protection class according to EN 60529 & & IP 65 with mating connector mounted and locked \\
\hline Line cross-section & \(\mathrm{mm}^{2}\) & 0.14 to 0.5 \\
\hline Number of poles & & 4 \\
\hline Cable diameter & mm & 4 to 7.5 \\
\hline Type of connection & & Soldered joint \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

For valves with round connector according to EN 175201-804, 6-pole + PE as well as 6-pole, compatible with VG 95328
- Mating connectors

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC U & Current \(I_{\text {max }}\) & Fitting & Cable diameter Connection cross-section & Material number & Circuit diagram Pole pattern \\
\hline \[
\begin{aligned}
& \text { 6-pole + PE, } \\
& 7 P Z 31 \ldots K
\end{aligned}
\] & tic version
\[
24
\] & 3 & PG 11 & \[
\begin{aligned}
& 6.5 \ldots . .11 \mathrm{~mm}^{2} \\
& 0.5 \ldots . .1 .5 \mathrm{~mm}^{2}
\end{aligned}
\] & R900021267 & \\
\hline \[
\begin{aligned}
& \text { 6-pole + PE, } \\
& \text { 7PZ31...M }
\end{aligned}
\] & version
\[
24
\] & 3 & PG 11 & \[
\begin{aligned}
& 8,0 \ldots 13.5 \mathrm{~mm} \\
& 0.5 \ldots 1.5 \mathrm{~mm}^{2}
\end{aligned}
\] & R900223890 & \\
\hline \begin{tabular}{l}
6-pole, metal \\
6P KPTC6
\end{tabular} & \begin{tabular}{l}
ion, com \\
24
\end{tabular} & le with
\[
3
\] & \begin{tabular}{l}
28 \\
Special
\end{tabular} & \[
\begin{gathered}
4.5 \ldots . .7 \mathrm{~mm} \\
0.4 \ldots 0.75 \mathrm{~mm}^{2}
\end{gathered}
\] & R901043330 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Ambient temperature & \({ }^{\circ} \mathrm{C}\) & -40 to +100 \\
\hline Protection class according to EN 60529 & & IP 67 with mating connector mounted and locked \\
\hline Number of poles & \(6(+\) PE) \\
\hline Type of connection & 7PZ31... & Soldered joint \\
\cline { 2 - 4 } & 6 KPTC6 & Crimping connection (crimping contacts in the scope of delivery) \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)
6-pole + PE, plastic version, 7PZ31...K

6-pole + PE, metal version, 7PZ31...M

6-pole, metal version, compatible with VG 95328, 6P KPTC6
Protection: Setscrew M3, \(M_{\mathrm{A}}=0.3 \mathrm{Nm}\)

Accessories for "6P KPTC6" (not included in scope of delivery)
\begin{tabular}{l|l}
\hline Company ITT Canon & Order number \\
\hline Crimping pliers & M22520/1-01 \\
\hline Crimping insert & M22520/1-02 \\
\hline Installation tool & CiTG-20A \\
\hline Installation pliers & CIT-KPTC-20 \\
\hline
\end{tabular}

For valves with round connector according to EN 175201-804, 11-pole + PE
- Mating connectors

\section*{Ordering code}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{l|l}
\hline Ambient temperature & \({ }^{\circ} \mathrm{C}\) \\
\hline Protection class according to EN 60529 & IP 65 with mating connector mounted and locked \\
\hline Number of poles & \(11+\mathrm{PE}\) \\
\hline Type of connection & Crimping connection (crimping contacts in the scope of delivery) \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)
11-pole + PE, metal version, shielded, 12PN11... EMV

11-pole + PE, plastic version, 12PN11

11-pole + PE, plastic version, two cable outlets, 12PN11...2XD8

Accessories (not included in scope of delivery)
\begin{tabular}{l|l}
\hline Company Hirschmann & Order number \\
\hline Crimping pliers & XCZ 0701 \\
\hline Ejection tool & XWA 164 \\
\hline
\end{tabular}

For mechanical pressure switches with connector "K14", according to EN 175301-803 and ISO 4400, 3-pole + PE, "large cubic connector"
- Mating connectors

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC U & \begin{tabular}{l}
Current \\
\(I_{\text {max }}\)
\end{tabular} & Color & Fitting & Material number & Circuit diagram \\
\hline Without circ
Z14 & y, standard
\[
\text { 12... } 240 \mathrm{~V}
\] & 16 & Black & M16 \(\times 1.5\) & R901017012 & \\
\hline \multicolumn{6}{|l|}{With indicator lights at connections 2 and 3} & \multirow[t]{5}{*}{} \\
\hline \multirow[t]{4}{*}{Z15L} & \(16 . .30 \mathrm{~V}\) & 4 & Black & M16 \(\times 1.5\) & R901017048 & \\
\hline & \(36 . . .60 \mathrm{~V}\) & 4 & Black & M16 \(\times 1.5\) & R901017032 & \\
\hline & \(90 . .130 \mathrm{~V}\) & 4 & Black & M16 \(\times 1.5\) & R901017035 & \\
\hline & 180... 240 V & 4 & Black & M16 \(\times 1.5\) & R901017037 & \\
\hline With indicat
Z15L6 & ights at conn
\[
16 . . .36 \mathrm{~V}
\] & ions 1 an & Black & M16 x 1.5 & R901017040 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ambient temperature} & Standard & \({ }^{\circ} \mathrm{C}\) & -40 to +125 \\
\hline & with indicator light & \({ }^{\circ} \mathrm{C}\) & -20 to +60 \\
\hline \multicolumn{3}{|l|}{Protection class according to EN 60529} & IP 65 with mating connector mounted and locked \\
\hline Indicator light & & \[
\begin{array}{r}
\text { Z15L } \\
\text { Z15L6 }
\end{array}
\] & Connection 2: LED green, connection 3: LED yellow Connection 1: LED green, connection 3: LED yellow \\
\hline \multicolumn{3}{|l|}{Number of poles} & \(3+\mathrm{PE}\) \\
\hline \multicolumn{2}{|l|}{Terminal area for lines with external diameter} & mm & 5 to 10 \\
\hline \multicolumn{2}{|l|}{Maximum line cross-section} & \(\mathrm{mm}^{2}\) & 1.5 with conductor sleeve \\
\hline \multicolumn{2}{|l|}{Type of connection} & & Screw connection \\
\hline
\end{tabular}

Unit dimensions: Z14, Z15L, Z15L6 (dimensions in mm)

\section*{Z14}

1 Mounting screw M3, tightening torque \(M_{\mathrm{A}}=0.5 \mathrm{Nm}\)

\section*{Z15L, Z15L6}

For mechanical pressure switches with connector "K14", according to EN 175301-803 and ISO 4400, 3-pole + PE, "large cubic connector"
- Cable sets

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & & & & Material num & cable length & \\
\hline designation & \(U\) & \(I_{\text {max }}\) & Color & 5 m & 10 m & Circuit diagram \\
\hline \multicolumn{6}{|l|}{Without circuitry, standard} & \\
\hline Z14 & 12-240 & 10 A & Black & R900058528 & R900217139 & (3 \\
\hline \multicolumn{6}{|l|}{With indicator light} & 1 -------7 1 \\
\hline Z14L & \[
24 \mathrm{~V}
\] & 4 A & Black & R900210635 & R900217140 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{ll|l}
\hline \multicolumn{2}{l}{} & \multicolumn{2}{l}{} \\
\hline Ambient temperature & -5 to +70 \\
\hline Protection class according to EN 60529 & Z14L & Connection 2: LED green, connection 3: LED yellow \\
\hline Indicator light & & PUR-JZ, gray \\
\hline Connection line & \(\mathrm{mm}^{2}\) & \(4 \times 0.75\) \\
\hline Line cross-section & Standard & \(\mathrm{mm}^{2}\) \\
\cline { 2 - 4 } & with indicator light & \(5 \times 0.5\) \\
\hline Core marking & PE & Green/yellow \\
\cline { 2 - 4 } & Other wires & Black with numbers \\
\hline Number of poles & & \(3+\) PE \\
\hline Cable diameter & & mm \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

1 LED
2 Flat seal (captive)
3 Name plate
4 Mounting screw M3 (captive), tightening torque \(M_{A}=0.5 \mathrm{Nm}\)

L Cable length 5 or 10 m (see "Ordering code")

For sensors and valves with connector "K24", "K35" and "K72"
- Mating connectors M12, 4-pole, line cross-section \(0.75 \mathrm{~mm}^{2}\)

\section*{Ordering code}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC
\[
U_{\max }
\] & Current
\[
I_{\text {max }}
\] & Color & Fitting & Material number & Circuit diagram Pole pattern \\
\hline \begin{tabular}{l}
M12 x 1, stra \\
4PE11508
\end{tabular} & 50 & 4 & Black & PG 7 & R900773042 & \\
\hline 4PZ24 & 50 & 3 & Black & PG 9 & R900031155 & \(3: C\) \\
\hline \multicolumn{7}{|l|}{M12 \(\times\) 1, angled} \\
\hline 4PE11509 & 50 & 4 & Black & PG 7 & R900779509 & \multirow[t]{2}{*}{} \\
\hline 4PZ24 & 50 & 3 & Black & PG 9 & R900082899 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{|c|c|c|c|}
\hline \multirow[t]{2}{*}{Ambient temperature} & 4PE1150... & \({ }^{\circ} \mathrm{C}\) & -25 to +85 \\
\hline & 4PZ24 & \({ }^{\circ} \mathrm{C}\) & -40 to +85 \\
\hline \multicolumn{3}{|l|}{Protection class according to EN 60529} & IP 67 with mating connector mounted and locked \\
\hline Maximum line cross-section & & \(\mathrm{mm}^{2}\) & \(4 \times 0.75\) \\
\hline Number of poles & & & 4 \\
\hline \multirow[t]{2}{*}{Cable diameter} & 4PE1150... & mm & 4 to 6 \\
\hline & 4PZ24 & mm & 6 to 8 \\
\hline Type of connection & & & Screw connection \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)
M12 x 1, straight, 4PE11508

M12 x 1, straight, 4PZ24

M12 x 1, angled, 4PE11509

M12 x 1, angled, 4PZ24

For sensors and valves with connector "K24", "K35" and "K72"
- Cable sets M12, 4-pole, line cross-section \(0.34 \mathrm{~mm}^{2}\)

\section*{Ordering code}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{ll|l}
\hline Ambient temperature & \({ }^{\circ} \mathrm{C}\) & -25 to +85 \\
\hline Protection class according to EN 60529 & IP 67 with mating connector mounted and locked \\
\hline Connection line & & PUR-OB, black with approval: UL, CSA, CE \\
\hline Line cross-section & \(\mathrm{mm}^{2}\) & \(4 \times 0.34\) \\
\hline Core marking & & \(1:\) Brown; 2: White; 3: Blue; 4: Black \\
\hline Number of poles & & 4 \\
\hline Cable diameter & mm & 5.9 \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

M12 x 1, straight, 4PM12 and 4PZ24

\begin{tabular}{ll}
R900773031 & \(L=2 m\) \\
R900064381 & \(L=3 m\) \\
R900779498 & \(L=5 m\)
\end{tabular}

M12 \(\times\) 1, angled, 4PM12

For sensors and valves with connector "K24", "K35" and "K72"
- Cable sets M12, 4-pole, line cross-section \(0.75 \mathrm{~mm}^{2}\)

Ordering code

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{ll|l}
\hline Ambient temperature & Fixedly laid & \({ }^{\circ} \mathrm{C}\) \\
& -25 to +80 \\
\cline { 2 - 4 } & Moveable & \({ }^{\circ} \mathrm{C}\) \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)
M12 x 1, straight, KABELSATZ VT-SSPA1-1X/M12/1/V00

M12 x 1, angled, KABELSATZ VT-SSPA1-1X/M12/2/V00

For mechanical position switches, mechanical pressure switches and valves with central connection with connector "K6"
- Mating connectors

Ordering code
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Short designation & Voltage DC / AC \(U\) & \begin{tabular}{l}
Current \\
\(I_{\text {max }}\)
\end{tabular} & Color & Fitting & Material number & Circuit diagram Pole pattern \\
\hline 6-pole + PE
7PZ6 & 250 V & 10 & Gray & PG 11 & R900002803 & \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{lc|l}
\hline Ambient temperature & \({ }^{\circ} \mathrm{C}\) & -40 to +90 \\
\hline Protection class according to EN 60529 & & IP 65 with mating connector mounted and locked \\
\hline Operating current, permanent & A & 10 \\
\hline Number of poles & & \(6+\mathrm{PE}\) \\
\hline Terminal area for lines with external diameter & mm & 7 to 9 \\
\hline Maximum line cross-section & \(\mathrm{mm}^{2}\) & 1.5 \\
\hline Type of connection & & Crimping connection (crimping contacts in the scope of delivery) \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

7PZ6

1 Mounting screw M3,
tightening torque \(M_{A}=0.5 \mathrm{Nm}\)

Accessories (not included in scope of delivery)
\begin{tabular}{l|l}
\hline Company HIRSCHMANN & Order number \\
\hline Crimping pliers & XCZ 0701 \\
\hline Ejection tool & XWA 164 \\
\hline
\end{tabular}

\section*{For directional valve with connector "C4" and "C4Z" (AMP Junior-Timer) \\ - Mating connectors}

\section*{Ordering code}
\begin{tabular}{l|c|c|c}
\hline Short designation & External line diameter in mm & Color & Material number \\
\hline 2P JUNIOR D2 2 & 2.2 to 3.0 & Black & R901022127 \\
\hline 2P D1.2 JUNIOR & 1.2 to 2.1 & Black & R900313533 \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline \multicolumn{3}{l}{} \\
\hline Ambient temperature range & \({ }^{\circ} \mathrm{C}\) & -20 to +125 \\
\hline Admissible operating voltage range & V DC & 10 to 32 \\
\hline Protection class according to EN 60529 & & IP 66A (correctly mounted and locked) \\
\hline Maximum operating current & A & 5 \\
\hline Number of poles & & 2 \\
\hline Admissible external cable diameter & mm & 5.2 to 7 \\
\hline Line cross-section & \(\mathrm{mm}^{2}\) & 0.5 to 1 \\
\hline Type of connection & & Crimping connection \\
\hline As-delivered state & \begin{tabular}{l}
1 connector housing, 2 contacts, \\
2
\end{tabular} & \begin{tabular}{l}
individual connector seals, 1 rubber bushing unmounted \\
in pouch
\end{tabular} \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

\section*{Housing AMP}

Type 282189-1

Accessories (not included in scope of delivery)
\begin{tabular}{l|l}
\hline Crimping tool & \\
\hline Basic pliers & Type 539635-1, company TYCO \\
\hline Die & Type 539737-2, company TYCO \\
\hline
\end{tabular}

For directional valves with connector "K40" (Deutsch plug)
- Mating connectors

\section*{Ordering code}
\begin{tabular}{l|c|c|c}
\hline Short designation & Line cross-section & Color & Material number \\
\hline 2P DT06 K40AWG14 & AWG14-16 & Gray & R900733451 \\
\hline 2P DT06 K40AWG16 & AWG16-18 & Gray & R901017847 \\
\hline
\end{tabular}

Technical data (For applications outside these parameters, please consult us!)
\begin{tabular}{lr|l}
\hline Connector housing & & DT06-2S-CE01 \\
\hline Ambient temperature range & \({ }^{\circ} \mathrm{C}\) & -20 to +125 \\
\hline Admissible operating voltage range & V DC & 10 to 32 \\
\hline Protection class according to EN 60529 & & IP 69K (correctly mounted and locked) \\
\hline Maximum operating current & A & 5 \\
\hline Number of poles & & 2 \\
\hline Maximum line cross-section & AWG 14-16 & \(\mathrm{mm}^{2}\) \\
\cline { 2 - 4 } & AWG 16-18 & \(\mathrm{mm}^{2}\) \\
\hline Admissible external diameter - individual conductor 2.08 \\
\hline Type of connection & \(\mathrm{mm}^{2}\) & 1.35 to 1.3 .05 \\
\hline As-delivered state & & Crimping connection \\
\hline
\end{tabular}

Unit dimensions (dimensions in mm)

Accessories (not included in scope of delivery)

\section*{Notes}

Bosch Rexroth AG
Hydraulics
Zum Eisengießer 1
97816 Lohr am Main, Germany
Phone +49 (0) 9352 / 18-0
documentation@boschrexroth.de
www.boschrexroth.de
© This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent. The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

\section*{Bosch Rexroth AG}

Zum Eisengießer 1
97816 Lohr, Germany
Phone +49 (0)9352/18-0
Fax \(\quad+49(0) 9352 / 18-40\)
info@boschrexroth.de
www.boschrexroth.com

Find your local contact person here:
www.boschrexroth.com/contact```

[^0]: 1) $0811405143 ; 0811405144$
 2) $0811405145 ; 0811405162$
[^1]: 1) Usually corresponds to a cable length < 100 m
 2) With a solenoid resistance of $R=19.5 \Omega$ and a solenoid current of $I=100 \mathrm{~mA}$
[^2]: Top view on open housing:
 G Command value attenuator/maximum current
 Z Zero point potentiometer/pilot current
 $t<\quad$ Ramp time "up"
 $t>$ Ramp time "down"
 f Frequency range

[^3]: ${ }^{1)}$ For the operation of the valve in the explosive area, additional safety measures are required. Here, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

[^4]: Bosch Rexroth AG
 Hydraulics
 Zum Eisengießer 1
 97816 Lohr am Main, Germany
 Phone +49 (0) 9352 / 18-0
 Fax $\quad+49(0) 9352 / 18-2358$
 documentation@boschrexroth.de
 www.boschrexroth.de

[^5]: ${ }^{1)}$ For the operation of the valve in the explosive area, additional safety measures are required. Here, we recommend using the Rexroth monitoring module VT-MUXA2-2. In this connection, observe data sheet 30290.

[^6]: Note:
 When using VT 11118 as substitute for VT 11011, VT 11012, VT 11013, VT 11090 or VT 11114, observe the configuration and adjustment notes given in supplementary information 30218-Z.

[^7]: \bullet = Jumper condition as supplied

[^8]: 1) Only with option A4
[^9]: - = Jumper condition as supplied

[^10]: ${ }^{1)}$ The maximum current $I_{\max }$ can be set to the required value by means of command value attenuator potentionmeter "Gw".

[^11]: $\square=$ Factory setting (corresponds to the configuration of a VT 2000 amplifier)

[^12]: 1) Provided that the zero point has been correctly set
[^13]: © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
 The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

[^14]: Note:
 When replacing a VT 11025, VT 11033 and VT 11034 the changed terminal allocation of position transducer connections has to be taken into account!

[^15]: Connection cable
 (recommendation):
 2-core cable, single screen, cross-section $1.5 \mathrm{~mm}^{2}$

 3-core cable, single screen, max. cross-section $1.5 \mathrm{~mm}^{2}$

[^16]: Bosch Rexroth AG
 Hydraulics
 Zum Eisengießer 1
 97816 Lohr am Main, Germany
 Telefon +49 (0) $9352 / 18-0$
 Telefax +49 (0) $9352 / 18-2358$
 documentation@boschrexroth.de
 www.boschrexroth.de

[^17]: ${ }^{1)} 0 \mathrm{~V}$ with $I_{\mathrm{m}}=0 \mathrm{~V}$ (enable OFF), +10 V with $I_{\mathrm{m}}=\max .\left(U_{\mathrm{E}}=10 \mathrm{~V}\right.$, potentiometer $\left.=c_{\mathrm{w}}\right)$

[^18]: 1) The allocations of voltage and ramp time specified in the table on page 3 shall apply.
[^19]: © 2003
 by Bosch Rexroth AG, Industrial Hydraulics, D-97813 Lohr am Main
 All rights reserved. No part of this document may be reproduced or stored, processed, duplicated or circulated using electronic systems, in any form or by means, without the prior written authorisation of Bosch Rexroth AG. In the event of contravention of the above provisions, the contravening party is obliged to pay compensation.

[^20]: ${ }^{1)}$ Variant with voltage regulator

[^21]: ${ }^{1)}$ Variant with voltage regulator

[^22]: ${ }^{1)}$ In version with voltage controller

[^23]: ${ }^{1)}$ For design with voltage regulator

[^24]: Bosch Rexroth AG
 Hydraulics
 Zum Eisengießer 1
 97816 Lohr am Main, Germany
 Phone +49 (0) 93 52 / 18-0
 documentation@boschrexroth.de
 www.boschrexroth.de

[^25]: © This document, as well as the data, specifications and other information set forth in it, are the exclusive property of Bosch Rexroth AG. It may not be reproduced or given to third parties without its consent.
 The data specified above only serve to describe the product. No statements concerning a certain condition or suitability for a certain application can be derived from our information. The information given does not release the user from the obligation of own judgment and verification. It must be remembered that our products are subject to a natural process of wear and aging.

[^26]: Command value Positive command value 0 to +10 V (or 12 to 20 mA) at pin D and reference potential at pin E result in flow from $\mathrm{P} \rightarrow \mathrm{A}$ and $B \rightarrow T$.
 Negative command value 0 to -10 V (or 12 to 4 mA) at pin D and reference potential at pin E result in flow from $P \rightarrow B$ and $\mathrm{A} \rightarrow \mathrm{T}$.
 Actual value Positive actual value 0 to +10 V (or 12 to 20 mA) at pin F and reference potential at pin C result in flow from $P \rightarrow A$ and $B \rightarrow T$.

 ## Connection line Recommendation:

 Up to 25 m line length type LiYCY $7 \times 0.75 \mathrm{~mm}^{2}$
 Up to 50 m line lenght type LiYCY $7 \times 1.00 \mathrm{~mm}^{2}$
 External diameter see sketch of mating connector

[^27]: ${ }^{1)}$ The protective earthing conductor (PE) is connected to cooling element and valve housing
 2) Pressure transducer in P, A, B and T depending on ordering code or an external pressure sensor via the 5 -pin M12 mating connector X4

[^28]: ＿V08 control spool
 ー ー ー－V16 control spool
 －－－－－－V32 control spool

[^29]: 1) Supply voltage is used directly for sensor connections X2M1, X2M2 and
[^30]: 1) Maximum load capacity 50 mA , voltage output same as voltage supply connected to input XH 2 !
 2) Only one signal input per interface, configurable
[^31]: Valve mounting screws (separate order)
 4 hexagon socket head cap screws, metric,
 ISO 4762-M5 x 30-10.9-N67F 82170
 Tightening torque $\boldsymbol{M}_{\mathrm{A}}=6+2 \mathrm{Nm}$
 Material no. 2910151166

[^32]: Size 6 and 10
 Component series 2X
 Maximum operating pressure 315 bar
 Maximum flow $100 \mathrm{l} / \mathrm{min}(\Delta p=70 \mathrm{bar}$)

[^33]: 1 Single-rod cylinder
 2 Integrated position measurement system
 3 Proportional servo valve with integrated control electronics

[^34]: 1) If a 24 V encoder supply is implemented directly via the
[^35]: ${ }^{1)}$ The inputs can be set to $0 . . .10 \mathrm{~V}, \pm 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ by means of software.
 ${ }^{2)}$ Output AO 1 can be set to $0 . . .10 \mathrm{~V}, \pm 10 \mathrm{~V}$ or $4 \ldots 20 \mathrm{~mA}$ by means of software.

